cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027363 Generalizing the 27 lines on a cubic surface: number of lines on the generic hypersurface of degree 2n-1 in complex projective (n+1)-space.

Original entry on oeis.org

1, 27, 2875, 698005, 305093061, 210480374951, 210776836330775, 289139638632755625, 520764738758073845321, 1192221463356102320754899, 3381929766320534635615064019, 11643962664020516264785825991165
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), Oct 15 1997

Keywords

References

  • Van der Waerden, see one of his 'Zur algebraischen Geometrie' papers.

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[ (1-x)*Product[ 2n-1-j+j*x, {j, 0, 2n-1}], x, n]; Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jan 23 2012, from second formula *)
  • PARI
    a(n) = my(x='x); polcoeff((1-x) * prod(j=0, 2*n-1, 2*n-1-j + j*x), n);
    vector(20, n, a(n))  \\ Gheorghe Coserea, Jul 28 2016

Formula

Let b(n, i)=i/(n-i+1) and g(n, k)=s[ k ](b(n, 1), b(n, 2), ..., b(n, n)), where s[ k ] is the k-th elementary symmetric function; a(n) = (2n-1)^2 * (2n-2)! * [ g(2n-2, n-1) - g(2n-2, n) ].
a(n) = [x^n] (1-x)*Product_{j=0..2n-1}(2n-1-j+j*x). [Van der Waerden]
a(n) ~ sqrt(27/Pi) * (2*n-1)^(2*n-3/2) * (1-9/(8*n)+O(1/n^2)). - Gheorghe Coserea, Jul 28 2016