cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027414 G.f. for Moebius transform is x * (1 + x) / (1 + x^4).

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 0, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 4, 0, 3, 0, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 1, 2, 4, 2, 2, 0, 2, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 4, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 4, 1, 0, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 2, 3, 3, 4, 0, 2, 1, 2, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + x^12 + ...
		

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, 0, -1, -1, 0, 0} [[ Mod[d, 8, 1]]], {d, Divisors @ n}]] (* Michael Somos, Nov 16 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -4, (d-1)%8\2 + 1)))} /* Michael Somos, Sep 20 2005 */

Formula

Moebius transform is period 8 sequence [1, 1, 0, 0, -1, -1, 0, 0, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^k * (1 + x^k) / (1 + x^(4*k)). - Michael Somos, Sep 20 2005
a(8*n + 5) = 0. a(8*n + 3) = A033761(n). - Michael Somos, Nov 16 2011