A027416 Number of unlabeled (and unrooted) trees on n nodes having a centroid.
1, 1, 0, 1, 1, 3, 3, 11, 13, 47, 61, 235, 341, 1301, 1983, 7741, 12650, 48629, 82826, 317955, 564225, 2144505, 3926353, 14828074, 27940136, 104636890, 201837109, 751065460, 1479817181, 5469566585, 10975442036, 40330829030, 82270184950
Offset: 0
Keywords
References
- F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 35, 36.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..200
- A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
- C. Jordan, Sur les assemblages des lignes, J. Reine angew. Math., 70 (1869), 185-190.
- A. Meir and J. W. Moon, On the branch-sizes of rooted unlabeled trees, in "Graph Theory and Its Applications", Annals New York Acad. Sci., Vol. 576, 1989, pp. 399-407.
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1. [This articles states incorrectly that A000676 and A000677 give the numbers of trees with respectively a centroid and bicentroid.]
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Maple
N := 50: Y := [ 1,1 ]: for n from 3 to N do x*mul( (1-x^i)^(-Y[ i ]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); Y := [ op(Y),b ]; od: P:=n->sum(Y[n-i]*Y[i],i=1..floor(n/2)): seq(Y[n]-P(n),n=1..35); # Emeric Deutsch, Nov 21 2004
Formula
a(n) = [x^n] 1 + x/Product_{i=1..ceiling(n/2)-1} (1-x^i)^A000081(i). See Cayley link above. - Geoffrey Critzer, Jul 30 2022
Extensions
More terms from Emeric Deutsch, Nov 21 2004
Entry revised (with new definition) by N. J. A. Sloane, Feb 26 2007
Comments