cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027448 Triangle read by rows: 4th power of the lower triangular mean matrix (M[i,j] = 1/i for i <= j).

Original entry on oeis.org

1, 15, 1, 575, 65, 8, 5845, 865, 175, 27, 874853, 153713, 39743, 9963, 1728, 1009743, 200403, 60333, 19153, 5368, 1000, 389919909, 84873489, 28400079, 10419739, 3681784, 1105000, 216000, 3449575767, 807843807, 292420227
Offset: 1

Views

Author

Keywords

Examples

			Table starts:
          1
         15           1
        575          65           8
       5845         865         175          27
     874853      153713       39743        9963        1728
    1009743      200403       60333       19153        5368        1000
		

Crossrefs

Cf. A027446 (square of M), A027447 (cube of M).

Programs

  • Maple
    Rows:= 10:
    M:= Matrix(Rows,Rows,(i,j) -> `if`(i>=j,1/i,0)):
    B:= M^4:
    L:= [seq(ilcm(seq(denom(B[i,j]),j=1..i)),i=1..Rows)]:
    seq(seq(B[i,j]*L[i],j=1..i),i=1..Rows); # Robert Israel, Oct 05 2019
  • Mathematica
    rows = 8; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m4 = m.m.m.m; Table[ fracs = m4[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    A027448_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^4); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

Let M be the lower triangular matrix with entries M[i,j] = 1/i for 1<=j<=i, and B = M^4. Then a(i,j) = B(i,j)*lcm(denom(B(i,1)),...,denom(B(i,i))). - Robert Israel, Oct 05 2019
That is, the fractions in M^4 are written using the least common denominator before taking the numerators. - M. F. Hasler, Nov 05 2019

Extensions

Edited by Robert Israel, Oct 05 2019