cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A027463 Second column of A027448.

Original entry on oeis.org

1, 65, 865, 153713, 200403, 84873489, 807843807, 25265669869, 28682861185, 42667254975995, 47094524452625, 113048851861209965, 122484165188229545, 131772609157313825, 1127325729624166675, 5892299098094866152275
Offset: 2

Views

Author

Keywords

Formula

Numerators of sequence a[ 2, n ] in (a[ i, j ])^4 where a[ i, j ] = 1/i if j<=i, 0 if j>i

A329122 First column of A027448.

Original entry on oeis.org

1, 15, 575, 5845, 874853, 1009743, 389919909, 3449575767, 101622655189, 109727076745, 156384687564755, 166320156938585, 386435095871809685, 406739013616700465, 426379471078085225, 3563283104558049475, 18232291817356124003075, 18937687901195398630875
Offset: 1

Views

Author

Sean A. Irvine, Nov 05 2019

Keywords

Comments

This sequences was originally A027462, but differs from the current version of A027462 for n >= 6. This difference arises because the rational numbers in the matrix defining A027448 (and hence this sequence) are not reduced to the lowest common denominator, whereas the values in A027462 are.

Crossrefs

A027454 First diagonal of A027448.

Original entry on oeis.org

1, 1, 8, 27, 1728, 1000, 216000, 1157625, 21952000, 16003008, 16003008000, 12326391000, 21300003648000, 17053975224000, 13865513485824, 91398648466125, 374368864117248000, 315376239610432000
Offset: 1

Views

Author

Keywords

Formula

Numerators of sequence a[ n, n ] in (a[ i, j ])^4 where a[ i, j ] = 1/i if j<=i, 0 if j>i

A027455 Second diagonal of A027448.

Original entry on oeis.org

15, 65, 175, 9963, 5368, 1105000, 5720625, 105686875, 75492928, 74269960128, 56445795000, 96454009575000, 76498373160000, 61692439558464, 403805999193597, 1643804692663258125, 1377243480733120000
Offset: 2

Views

Author

Keywords

Formula

Numerators of sequence a[ n, n-1 ] in (a[ i, j ])^4 where a[ i, j ] = 1/i if j<=i, 0 if j>i

A027456 Third diagonal of A027448.

Original entry on oeis.org

575, 865, 39743, 19153, 3681784, 18198125, 325151875, 226462663, 218431158848, 163390785768, 275577122835000, 216187828065000, 172736941569984, 1121674137386517, 4534605234349771581, 3776294388104363125, 21799582086436073920000, 18520810592837638076992
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A027448.

Formula

Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^4 where a[ i, j ] = 1/i if j<=i, 0 if j>i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027464 Third column of A027448.

Original entry on oeis.org

8, 175, 39743, 60333, 28400079, 292420227, 9723178009, 11596904605, 17970237912815, 20530907592845, 50764671209056505, 56436971899092485, 62109279389181725, 542166878698918075, 2885442896258516289275, 3106224746146152726675, 22811796735204826462092225
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A027448.

Formula

Numerators of sequence a[ 3, n ] in (a[ i, j ])^4 where a[ i, j ] = 1/i if j<=i, 0 if j>i.

Extensions

More terms from Sean A. Irvine, Nov 05 2019

A027447 Triangle read by rows: cube of the lower triangular mean matrix.

Original entry on oeis.org

1, 7, 1, 85, 19, 4, 415, 115, 37, 9, 12019, 3799, 1489, 549, 144, 13489, 4669, 2059, 919, 364, 100, 726301, 268921, 128431, 64171, 30676, 12700, 3600, 3144919, 1227199, 621139, 334699, 178669, 89125, 38025, 11025, 30300391, 12335311, 6527971, 3714811, 2134141, 1187125, 609625, 265825, 78400
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
      1;
      7,    1;
     85,   19,    4;
    415,  115,   37,   9;
  12019, 3799, 1489, 549, 144,
  ...
		

Crossrefs

Programs

  • Mathematica
    rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n,1..n]); print(denominator(row)*row))} \\ Michel Marcus, Nov 05 2019, edited by M. F. Hasler, Nov 05 2019
    
  • PARI
    A027447_row(n)=denominator(n=(matrix(n,n, i,j, (j<=i)/i)^3)[n,])*n \\ M. F. Hasler, Nov 05 2019

Formula

Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by M. F. Hasler, Nov 05 2019]

Extensions

More terms from Michel Marcus, Nov 05 2019

A027446 Triangle read by rows: square of the lower triangular mean matrix.

Original entry on oeis.org

1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1

Views

Author

Keywords

Comments

Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by M. F. Hasler, Nov 05 2019]

Examples

			Triangle starts
     1
     3,    1
    11,    5,    2
    25,   13,    7,    3
   137,   77,   47,   27,   12
   147,   87,   57,   37,   22,   10
  1089,  669,  459,  319,  214,  130,  60
  2283, 1443, 1023,  743,  533,  365, 225, 105
  7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
  ... - _Joerg Arndt_, Mar 29 2013
		

Crossrefs

The row sums give A081528(n), n>=1.
The column sequences give A025529, A027457, A027458 for j=1..3.
The diagonal sequences give A002944, A027449, A027450.

Programs

  • Mathematica
    rows = 10;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
  • PARI
    A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j).
a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise.

Extensions

Edited by M. F. Hasler, Nov 05 2019

A119947 Triangle of numerators in the square of the matrix A[i,j] = 1/i for j <= i, 0 otherwise.

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 25, 13, 7, 1, 137, 77, 47, 9, 1, 49, 29, 19, 37, 11, 1, 363, 223, 153, 319, 107, 13, 1, 761, 481, 341, 743, 533, 73, 15, 1, 7129, 4609, 3349, 2509, 1879, 275, 191, 17, 1, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 121, 19, 1, 83711, 55991, 42131, 32891, 25961
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The triangle of the corresponding denominators is A119948. The rationals appear in lowest terms (while in A027446 they are row-wise on the least common denominator).
The triangle with row number i multiplied with the least common multiple (LCM) of its denominators yields A027446.
First column is A001008. - Tilman Neumann, Oct 01 2008
Column 2 is A064169. - Clark Kimberling, Aug 13 2012
Third diagonal (11, 13, 47, ...) is A188386. - Clark Kimberling, Aug 13 2012

Examples

			The rationals are [1]; [3/4, 1/4]; [11/18, 5/18, 1/9]; [25/48, 13/48, 7/48, 1/16]; ... See the W. Lang link for more.
From _Clark Kimberling_, Aug 13 2012: (Start)
As a triangle given by f(n,m) = Sum_{h=m..n} 1/h, the first six rows are:
    1
    3    1
   11    5    1
   25   13    7    1
  137   77   47    9    1
   49   29   19   37   11    1
  363  223  153  319  107   13    1
(End)
		

Crossrefs

Cf. A002024: i appears i times (denominators in row i of the matrix A).
Row sums give A119949. Row sums of the triangle of rationals always give 1.
For the cube of this matrix see the rational triangle A119935/A119932 and A027447; see A027448 for the fourth power.

Programs

  • Mathematica
    f[n_, m_] := Numerator[Sum[1/k, {k, m, n}]]
    Flatten[Table[f[n, m], {n, 1, 10}, {m, 1, n}]]
    TableForm[Table[f[n, m], {n, 1, 10}, {m, 1, n}]] (* Clark Kimberling, Aug 13 2012 *)
  • PARI
    A119947_upto(n)={my(M=matrix(n,n,i,j,(j<=i)/i)^2);vector(n,r,apply(numerator,M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

a(i,j) = numerator(r(i,j)) with r(i,j):=(A^2)[i,j], where the matrix A has elements a[i,j] = 1/i if j<=i, 0 if j>i, (lower triangular).

Extensions

Edited by M. F. Hasler, Nov 05 2019

A027462 a(n) is the numerator of (-1/6) * Integral_{x=0..1} x^n * log^3(1-x).

Original entry on oeis.org

1, 15, 575, 5845, 874853, 336581, 129973303, 1149858589, 101622655189, 21945415349, 31276937512951, 33264031387717, 77287019174361937, 81347802723340093, 17055178843123409, 142531324182321979
Offset: 1

Views

Author

Keywords

Comments

Originally defined as the first column of A027448, but now contains numerator in reduced form (cf. A329122). - Sean A. Irvine, Nov 05 2019

Crossrefs

Cf. A027459.

Programs

  • Mathematica
    a[n_] := -1/6 Integrate[x^(n-1) Log[1-x]^3, {x, 0, 1}] // Numerator;
    Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Aug 06 2018 *)

Formula

Numerators of sequence a(1,n) in (a(i,j))^4 where a(i,j) = 1/i if j <= i, 0 if j > i.
Numerators of (H(n,1)^3 + 3*H(n,1)*H(n,2) + 2*H(n,3))/(6*n) = ((gamma+Psi(n+1))^3 + 3*(gamma+Psi(n+1))*(1/6*Pi^2 - Psi(1, n+1)) + 2*Zeta(3) + Psi(2, n+1))/(6*n), where H(n, m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers. - Vladeta Jovovic, Aug 10 2002
From Groux Roland, Feb 11 2011: (Start)
For n>=1, (H(n,1)^3 + 3*H(n,1)*H(n,2) + 2*H(n,3))/(6*n) = -(1/6)*Integral_{x=0..1} x^(n-1)*log^3(1-x) dx = (1/n)*Sum_{j=1..n} (H(n,1) - H(j-1,1))*H(j,1)/j.
For every k>=1 the first column of (a(i,j))^k is the binomial transform of (-1)^n/(n+1)^k.
Proof: the sequence S(n,k) = ((-1)^k/k!)*Integral_{x=0..1} x^(n-1)*log^k(1-x) dx gives the binomial transform of (-1)^n/(n+1)^(k+1) and can be evaluated by parts with S(n,k) = (1/n)*Sum_{j=1..k} S(j,k-1) according to the generation of the first column of (a(i,j))^k.
(End)

Extensions

Corrected by Vladeta Jovovic, Aug 10 2002
Title changed by Sean A. Irvine, Nov 05 2019
Showing 1-10 of 10 results.