cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A027449 Second diagonal of A027446.

Original entry on oeis.org

3, 5, 7, 27, 22, 130, 225, 595, 532, 5292, 4830, 57750, 53460, 49764, 93093, 1486485, 1401400, 25185160, 23891868, 22724988, 21666840, 476166600, 455885430, 2186310126, 2100505176, 6063549800, 5842908500, 163495203300, 157949751960, 4735815444360
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A027446.

Programs

  • Mathematica
    rows = 31;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    a[n_] := T[[n, n-1]];
    Table[a[n], {n, 2, rows}] (* Jean-François Alcover, May 06 2022 *)

Formula

Numerators of sequence a[ n, n-1 ] in (a[ i, j ])^2 where a[ i, j ] = 1/i if j<=i, 0 if j>i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027450 Third diagonal of A027446.

Original entry on oeis.org

11, 13, 47, 37, 214, 365, 955, 847, 8372, 7602, 90510, 83490, 77484, 144573, 2303301, 2167165, 38878840, 36824788, 34977228, 33306468, 731129880, 699259470, 3350272926, 3215969526, 9276087128, 8931886700, 249757779700, 241131522060, 7225531873560
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A027446.

Programs

  • Mathematica
    rows = 31;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    a[n_] := T[[n, n-2]];
    Table[a[n], {n, 3, rows}] (* Jean-François Alcover, May 06 2022 *)

Formula

Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^2 where a[ i, j ] = 1/i if j<=i, 0 if j>i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027458 Third column of A027446.

Original entry on oeis.org

2, 7, 47, 57, 459, 1023, 3349, 3601, 42131, 44441, 605453, 631193, 655217, 1355479, 23763863, 24444543, 476698557, 488338185, 499423545, 510005025, 11962908135, 12186001005, 62000850801, 63030510201, 192066102203, 194934439103, 5733412167187, 5811048485947
Offset: 3

Views

Author

Keywords

Programs

  • Mathematica
    rows = 30;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    a[n_] := T[[n, 3]];
    Table[a[n], {n, 3, rows}] (* Jean-François Alcover, May 06 2022 *)

Formula

Numerators of sequence a[ 3, n ] in (a[ i, j ])^2 where a[ i, j ] = 1/i if j<=i, 0 if j>i

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A025529 a(n) = (1/1 + 1/2 + ... + 1/n)*lcm{1,2,...,n}.

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 1089, 2283, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 825887397, 837527025, 848612385, 859193865, 19994251455, 20217344325, 102157567401, 103187226801, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Keywords

Comments

First column of A027446. - Eric Desbiaux, Mar 29 2013
From Amiram Eldar and Thomas Ordowski, Aug 07 2019: (Start)
By Wolstenholme's theorem, if p > 3 is a prime, then p^2 | a(p-1).
Conjecture: for n > 3, if n^2 | a(n-1), then n is a prime.
Note that if n = p^2 with prime p > 3, then n | a(n-1).
It seems that composite numbers n such that n | a(n-1) are only the squares n = p^2 of primes p > 3.
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164.
The n-th triangular number n(n+1)/2 | a(n) for n = 1, 2, 6, 4422, ... (End)

Crossrefs

Differs from A096617 at 7th term.

Programs

  • GAP
    List([1..30],n->Sum([1..n],k->1/k)*Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
    
  • Magma
    [HarmonicNumber(n)*Lcm([1..n]):n in [1..30]]; // Marius A. Burtea, Aug 07 2019
  • Maple
    a:= n-> add(1/k, k=1..n)*ilcm($1..n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 14 2013
  • Mathematica
    Table[HarmonicNumber[n]*LCM @@ Range[n], {n, 27}] (* Arkadiusz Wesolowski, Mar 29 2012 *)
  • PARI
    a(n) = sum(k=1, n, 1/k)*lcm([1..n]); \\ Michel Marcus, Apr 02 2018
    

Formula

a(n) = A001008(n)*A110566(n). - Arkadiusz Wesolowski, Mar 29 2012
a(n) = Sum_{k=1..n} lcm(1,2,...,n)/k. - Thomas Ordowski, Aug 07 2019

A027447 Triangle read by rows: cube of the lower triangular mean matrix.

Original entry on oeis.org

1, 7, 1, 85, 19, 4, 415, 115, 37, 9, 12019, 3799, 1489, 549, 144, 13489, 4669, 2059, 919, 364, 100, 726301, 268921, 128431, 64171, 30676, 12700, 3600, 3144919, 1227199, 621139, 334699, 178669, 89125, 38025, 11025, 30300391, 12335311, 6527971, 3714811, 2134141, 1187125, 609625, 265825, 78400
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
      1;
      7,    1;
     85,   19,    4;
    415,  115,   37,   9;
  12019, 3799, 1489, 549, 144,
  ...
		

Crossrefs

Programs

  • Mathematica
    rows = 9; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m3 = m.m.m; Table[ fracs = m3[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    tabl(nn) = {my(M = matrix(nn, nn, i, j, if (j<=i, 1/i, 0))^3); for (n=1, nn, my(row = M[n,1..n]); print(denominator(row)*row))} \\ Michel Marcus, Nov 05 2019, edited by M. F. Hasler, Nov 05 2019
    
  • PARI
    A027447_row(n)=denominator(n=(matrix(n,n, i,j, (j<=i)/i)^3)[n,])*n \\ M. F. Hasler, Nov 05 2019

Formula

Let A be the matrix with A[i,j] = 1/i if j <= i, 0 if j > i. Then this table lists the numerators in A^3 when each row is written using the least common denominator. [Edited by M. F. Hasler, Nov 05 2019]

Extensions

More terms from Michel Marcus, Nov 05 2019

A027448 Triangle read by rows: 4th power of the lower triangular mean matrix (M[i,j] = 1/i for i <= j).

Original entry on oeis.org

1, 15, 1, 575, 65, 8, 5845, 865, 175, 27, 874853, 153713, 39743, 9963, 1728, 1009743, 200403, 60333, 19153, 5368, 1000, 389919909, 84873489, 28400079, 10419739, 3681784, 1105000, 216000, 3449575767, 807843807, 292420227
Offset: 1

Views

Author

Keywords

Examples

			Table starts:
          1
         15           1
        575          65           8
       5845         865         175          27
     874853      153713       39743        9963        1728
    1009743      200403       60333       19153        5368        1000
		

Crossrefs

Cf. A027446 (square of M), A027447 (cube of M).

Programs

  • Maple
    Rows:= 10:
    M:= Matrix(Rows,Rows,(i,j) -> `if`(i>=j,1/i,0)):
    B:= M^4:
    L:= [seq(ilcm(seq(denom(B[i,j]),j=1..i)),i=1..Rows)]:
    seq(seq(B[i,j]*L[i],j=1..i),i=1..Rows); # Robert Israel, Oct 05 2019
  • Mathematica
    rows = 8; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m4 = m.m.m.m; Table[ fracs = m4[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    A027448_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^4); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

Let M be the lower triangular matrix with entries M[i,j] = 1/i for 1<=j<=i, and B = M^4. Then a(i,j) = B(i,j)*lcm(denom(B(i,1)),...,denom(B(i,i))). - Robert Israel, Oct 05 2019
That is, the fractions in M^4 are written using the least common denominator before taking the numerators. - M. F. Hasler, Nov 05 2019

Extensions

Edited by Robert Israel, Oct 05 2019

A188386 a(n) = numerator(H(n+2)-H(n-1)), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.

Original entry on oeis.org

11, 13, 47, 37, 107, 73, 191, 121, 299, 181, 431, 253, 587, 337, 767, 433, 971, 541, 1199, 661, 1451, 793, 1727, 937, 2027, 1093, 2351, 1261, 2699, 1441, 3071, 1633, 3467, 1837, 3887, 2053, 4331, 2281, 4799, 2521, 5291, 2773, 5807, 3037, 6347, 3313, 6911, 3601
Offset: 1

Views

Author

Gary Detlefs, Mar 29 2011

Keywords

Comments

Denominators are listed in A033931.
A027446 appears to be divisible by a(n).
The sequence lists also the largest odd divisors of 3*m^2-1 (A080663) for m>1. In fact, for m even, the largest odd divisor is 3*m^2-1 itself; for m odd, the largest odd divisor is (3*m^2-1)/2. From this follows the second formula given in Formula field. - Bruno Berselli, Aug 27 2013

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a188386 n = a188386_list !! (n-1)
    a188386_list = map numerator $ zipWith (-) (drop 3 hs) hs
       where hs = 0 : scanl1 (+) (map (1 %) [1..])
    -- Reinhard Zumkeller, Jul 03 2012
  • Magma
    [Numerator((3*n^2+6*n+2)/((n*(n+1)*(n+2)))): n in [1..50]]; // Vincenzo Librandi, Mar 30 2011
    
  • Maple
    seq((3-(-1)^n)*(3*n^2+6*n+2)/4, n=1..100);
  • Mathematica
    Table[(3 - (-1)^n)*(3*n^2 + 6*n + 2)/4, {n, 40}] (* Wesley Ivan Hurt, Jan 29 2017 *)
    Numerator[#[[4]]-#[[1]]]&/@Partition[HarmonicNumber[Range[0,50]],4,1] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{11,13,47,37,107,73},50] (* Harvey P. Dale, Dec 31 2017 *)

Formula

a(n) = numerator((3*n^2+6*n+2)/(n*(n+1)*(n+2))).
a(n) = (3-(-1)^n)*(3*n^2+6*n+2)/4.
a(2n+1) = A158463(n+1), a(2n) = A003154(n+1).
G.f.: -x*(11+13*x+14*x^2-2*x^3-x^4+x^5) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 09 2011
a(n) = numerator of coefficient of x^3 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - Francesco Daddi, Aug 04 2011
H(n+3) = 3/2 + 2*f(n)/((n+2)*(n+3)), where f(n) = Sum_{k=0..n}((-1)^k*binomial(-3,k)/(n+1-k)). - Gary Detlefs, Jul 17 2011
a(n) = A213998(n+2,2). - Reinhard Zumkeller, Jul 03 2012
Sum_{n>=1} 1/a(n) = c*(tan(c) - cot(c)/2) - 1/2, where c = Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022

A027457 a(n) = (H(n) - 1)*lcm{1,...,n}, where H(n) is the n-th harmonic number.

Original entry on oeis.org

0, 1, 5, 13, 77, 87, 669, 1443, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 593094837, 604734465, 615819825, 626401305, 14640022575, 14863115445, 75386423001, 76416082401, 232222818803, 235091155703, 6897956948587
Offset: 1

Views

Author

Keywords

Comments

Second column of A027446. - Olivier Gérard, Dec 11 1999
Rows sums of (A002262*A096180). - Eric Desbiaux, Apr 23 2013

Examples

			a(3) = (1/2+1/3)*lcm(2,3) = 5.
		

Crossrefs

Programs

  • Magma
    [(HarmonicNumber(n)-1)*Lcm([1..n]): n in [1..30]]; // Vincenzo Librandi, Dec 14 2016
    
  • Maple
    A027457 := n -> (Psi(n+1)-1+gamma)*lcm(seq(k,k=1..n)): # Peter Luschny, Dec 01 2011
    # alternative:
    A[1]:= 0: L[1]:= 1:
    for n from 1 to 50 do
       L[n+1]:= ilcm(L[n],n+1);
       A[n+1]:= L[n+1]*(A[n]/L[n] + 1/(n+1))
    od:
    seq(A[n],n=1..50); # Robert Israel, Dec 14 2016
  • Mathematica
    a[n_] := (HarmonicNumber[n] - 1)*LCM @@ Range[n]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    a(n) = (sum(i=1, n, 1/i)-1)*lcm([1..n]); \\ Michel Marcus, Jul 23 2022

Formula

Numerators of sequence a[ 2, n ] in (a[ i, j ])^2 where a[ i, j ] = 1/i if j<=i, 0 if j>i. - N. J. A. Sloane, Feb 24 2006
a(n) = (Psi(n+1)-1+gamma)*LCM(n), LCM(n) = lcm{1..n}. - Peter Luschny, Dec 01 2011
a(n+1) = A003418(n+1)*(a(n)/A003418(n)+1/(n+1)). - Robert Israel, Dec 14 2016

Extensions

New name, offset changed to 1, a(1) and a(21)-a(29) added. - Peter Luschny, Dec 01 2011

A119947 Triangle of numerators in the square of the matrix A[i,j] = 1/i for j <= i, 0 otherwise.

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 25, 13, 7, 1, 137, 77, 47, 9, 1, 49, 29, 19, 37, 11, 1, 363, 223, 153, 319, 107, 13, 1, 761, 481, 341, 743, 533, 73, 15, 1, 7129, 4609, 3349, 2509, 1879, 275, 191, 17, 1, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 121, 19, 1, 83711, 55991, 42131, 32891, 25961
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The triangle of the corresponding denominators is A119948. The rationals appear in lowest terms (while in A027446 they are row-wise on the least common denominator).
The triangle with row number i multiplied with the least common multiple (LCM) of its denominators yields A027446.
First column is A001008. - Tilman Neumann, Oct 01 2008
Column 2 is A064169. - Clark Kimberling, Aug 13 2012
Third diagonal (11, 13, 47, ...) is A188386. - Clark Kimberling, Aug 13 2012

Examples

			The rationals are [1]; [3/4, 1/4]; [11/18, 5/18, 1/9]; [25/48, 13/48, 7/48, 1/16]; ... See the W. Lang link for more.
From _Clark Kimberling_, Aug 13 2012: (Start)
As a triangle given by f(n,m) = Sum_{h=m..n} 1/h, the first six rows are:
    1
    3    1
   11    5    1
   25   13    7    1
  137   77   47    9    1
   49   29   19   37   11    1
  363  223  153  319  107   13    1
(End)
		

Crossrefs

Cf. A002024: i appears i times (denominators in row i of the matrix A).
Row sums give A119949. Row sums of the triangle of rationals always give 1.
For the cube of this matrix see the rational triangle A119935/A119932 and A027447; see A027448 for the fourth power.

Programs

  • Mathematica
    f[n_, m_] := Numerator[Sum[1/k, {k, m, n}]]
    Flatten[Table[f[n, m], {n, 1, 10}, {m, 1, n}]]
    TableForm[Table[f[n, m], {n, 1, 10}, {m, 1, n}]] (* Clark Kimberling, Aug 13 2012 *)
  • PARI
    A119947_upto(n)={my(M=matrix(n,n,i,j,(j<=i)/i)^2);vector(n,r,apply(numerator,M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

a(i,j) = numerator(r(i,j)) with r(i,j):=(A^2)[i,j], where the matrix A has elements a[i,j] = 1/i if j<=i, 0 if j>i, (lower triangular).

Extensions

Edited by M. F. Hasler, Nov 05 2019
Showing 1-10 of 10 results.