cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A002805 Denominators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 4084080, 77597520, 15519504, 5173168, 5173168, 118982864, 356948592, 8923714800, 8923714800, 80313433200, 80313433200, 2329089562800, 2329089562800, 72201776446800
Offset: 1

Views

Author

Keywords

Comments

H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
If n is not in {1, 2, 6} then a(n) has at least one prime factor other than 2 or 5. E.g., a(5) = 60 has a prime factor 3 and a(7) = 140 has a prime factor 7. This implies that every H(n) = A001008(n)/A002805(n), n not from {1, 2, 6}, has an infinite decimal representation. For a proof see the J. Havil reference. - Wolfdieter Lang, Jun 29 2007
a(n) = A213999(n,n-1). - Reinhard Zumkeller, Jul 03 2012
From Wolfdieter Lang, Apr 16 2015: (Start)
a(n)/A001008(n) = 1/H(n) is the solution of the following version of the classical cistern and pipes problem. A cistern is connected to n different pipes of water. For the k-th pipe it takes k time units (say, days) to fill the empty cistern, for k = 1, 2, ..., n. How long does it take for the n pipes together to fill the empty cistern? 1/H(n) gives the answer as a fraction of the time unit.
In general, if the k-th pipe needs d(k) days to fill the empty cistern then all pipes together need 1/Sum_{k=1..n} 1/d(k) = HM(d(1), ..., d(n))/n days, where HM denotes the harmonic mean HM. For the described problem, HM(1, 2, ..., n)/n = A102928(n)/(n*A175441(n)) = 1/H(n).
For a classical cistern and pipes problem see, e.g., the Hunger-Vogel reference (in Greek and German) given in A256101, problem 27, p. 29, where n = 3, and d(1), d(2) and d(3) are 6, 4 and 3 days. On p. 97 of this reference one finds remarks on the history of such problems (called in German 'Brunnenaufgabe'). (End)
From Wolfdieter Lang, Apr 17 2015: (Start)
An example of the above mentioned cistern and pipes problems appears in Chiu Chang Suan Shu (nine books on arithmetic) in book VI, problem 26. The numbers are there 1/2, 1, 5/2, 3 and 5 (days) and the result is 15/75 (day). See the reference (in German) on p. 68.
A historical account on such cistern problems is found in the Johannes Tropfke reference, given in A256101, section 4.2.1.2 Zisternenprobleme (Leistungsprobleme), pp. 578-579.
In Fibonacci's Liber Abaci such problems appear on p. 281 and p. 284 of L. E. Sigler's translation. (End)
All terms > 1 are even while corresponding numerators (A001008) are all odd (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021

Examples

			H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ] = A001008/A002805.
		

References

  • Chiu Chang Suan Shu, Neun Bücher arithmetischer Technik, translated and commented by Kurt Vogel, Ostwalds Klassiker der exakten Wissenschaften, Band 4, Friedr. Vieweg & Sohn, Braunschweig, 1968, p. 68.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 258-261.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
  • J. Havil, Gamma, (in German), Springer, 2007, p. 35-6; Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
  • L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 281, 284.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001008 (numerators), A075135, A025529, A203810, A203811, A203812.
Partial sums: A027612/A027611 = 1, 5/2, 13/3, 77/12, 87/10, 223/20,...
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358, Sum 1/n^2: A007406/A007407, Sum 1/n^3: A007408/A007409.

Programs

  • GAP
    List([1..30],n->DenominatorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
    
  • Haskell
    import Data.Ratio ((%), denominator)
    a002805 = denominator . sum . map (1 %) . enumFromTo 1
    a002805_list = map denominator $ scanl1 (+) $ map (1 %) [1..]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Denominator(HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Apr 16 2015
    
  • Maple
    seq(denom(sum((2*k-1)/k, k=1..n), n=1..30); # Gary Detlefs, Jul 18 2011
    f:=n->denom(add(1/k, k=1..n)); # N. J. A. Sloane, Nov 15 2013
  • Mathematica
    Denominator[ Drop[ FoldList[ #1 + 1/#2 &, 0, Range[ 30 ] ], 1 ] ] (* Harvey P. Dale, Feb 09 2000 *)
    Table[Denominator[HarmonicNumber[n]], {n, 1, 40}] (* Stefan Steinerberger, Apr 20 2006 *)
    Denominator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
  • PARI
    a(n)=denominator(sum(k=2,n,1/k)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from fractions import Fraction
    def a(n): return sum(Fraction(1, i) for i in range(1, n+1)).denominator
    print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Dec 24 2021
  • Sage
    def harmonic(a, b): # See the F. Johansson link.
        if b - a == 1 : return 1, a
        m = (a+b)//2
        p, q = harmonic(a,m)
        r, s = harmonic(m,b)
        return p*s+q*r, q*s
    def A002805(n) : H = harmonic(1,n+1); return denominator(H[0]/H[1])
    [A002805(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
    

Formula

a(n) = Denominator(Sum_{k=1..n} (2*k-1)/k). - Gary Detlefs, Jul 18 2011
a(n) = n! / gcd(Stirling1(n+1, 2), n!) = n! / gcd(A000254(n),n!). - Max Alekseyev, Mar 01 2018
a(n) = the (reduced) denominator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024

Extensions

Definition edited by Daniel Forgues, May 19 2010

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A110566 a(n) = lcm{1,2,...,n}/denominator of harmonic number H(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 15, 45, 45, 45, 15, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 77, 77, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 27, 27, 27, 9, 9, 9, 3, 3, 3, 3, 3, 33, 33, 33, 33, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1
Offset: 1

Views

Author

Franz Vrabec, Sep 12 2005

Keywords

Comments

a(n) is always odd.
Unsorted union: 1, 3, 15, 45, 11, 77, 7, 9, 27, 33, 25, 5, 55, 275, 13, 39, 17, 49, 931, 19, 319, 75, ..., . See A112810.
It is conjectured that every odd number occurs in this sequence (see A112822 for the first occurrence of each of them). - Jianing Song, Nov 28 2022

Examples

			a(6) = 60/20 = 3 because lcm{1,2,3,4,5,6}=60 and H(6)=49/20.
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    L:= proc(n) L(n):= ilcm(n, `if`(n=1, 1, L(n-1))) end:
    a:= n-> L(n)/denom(H(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 30 2012
  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 15 2005 *)
  • PARI
    a(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Mar 07 2018
    
  • Python
    from sympy import lcm, harmonic
    def A110566(n): return lcm([k for k in range(1,n+1)])//harmonic(n).q # Chai Wah Wu, Mar 06 2021

Formula

a(n) = A003418(n)/A002805(n) = A025529(n)/A001008(n).
From Franz Vrabec, Sep 21 2005: (Start)
a(n) = gcd(lcm{1,2,...,n}, H(n)*lcm{1,2,...,n}).
a(n) = gcd(A003418(n), A025529(n)). (End)

Extensions

More terms from Robert G. Wilson v, Sep 15 2005

A025527 a(n) = n!/lcm{1,2,...,n} = (n-1)!/lcm{C(n-1,0), C(n-1,1), ..., C(n-1,n-1)}.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 522547200, 522547200, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

a(n) = a(n-1) iff n is prime. Thus a(1)=a(2)=a(3)=1 is the only triple in this sequence. - Franz Vrabec, Sep 10 2005
a(k) = a(k+1) for k in A006093. - Lekraj Beedassy, Aug 03 2006
Partial products of A048671. - Peter Luschny, Sep 09 2009

Examples

			a(5) = 2 as 5!/lcm(1..5) = 120/60 = 2.
		

Crossrefs

Programs

Formula

a(n) = A000142(n)/A003418(n) = A000254(n)/A025529(n). - Franz Vrabec, Sep 13 2005
log a(n) = n log n - 2n + O(n/log^4 n). (The error term can be improved. On the Riemann Hypothesis it is O(n^k) for any k > 1/2.) - Charles R Greathouse IV, Oct 16 2012
a(n) = A205957(n), 1 <= n <= 11. - Daniel Forgues, Apr 22 2014
Conjecture: a(A006093(n)) = phi(A000142(A006093(n))) / phi(A003418(A006093(n))), where phi is the Euler totient function. - Fred Daniel Kline, Jun 03 2017

A027446 Triangle read by rows: square of the lower triangular mean matrix.

Original entry on oeis.org

1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1

Views

Author

Keywords

Comments

Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by M. F. Hasler, Nov 05 2019]

Examples

			Triangle starts
     1
     3,    1
    11,    5,    2
    25,   13,    7,    3
   137,   77,   47,   27,   12
   147,   87,   57,   37,   22,   10
  1089,  669,  459,  319,  214,  130,  60
  2283, 1443, 1023,  743,  533,  365, 225, 105
  7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
  ... - _Joerg Arndt_, Mar 29 2013
		

Crossrefs

The row sums give A081528(n), n>=1.
The column sequences give A025529, A027457, A027458 for j=1..3.
The diagonal sequences give A002944, A027449, A027450.

Programs

  • Mathematica
    rows = 10;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
  • PARI
    A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j).
a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise.

Extensions

Edited by M. F. Hasler, Nov 05 2019

A096617 Numerator of n*HarmonicNumber(n).

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Comments

a(1) = 1, a(n) = Numerator( H(n) / H(n-1) ), where H(n) = HarmonicNumber(n) = A001008(n)/A002805(n). - Alexander Adamchuk, Oct 29 2004
Sampling a population of n distinct elements with replacement, n HarmonicNumber(n) is the expectation of the sample size for the acquisition of all n distinct elements. - Franz Vrabec, Oct 30 2004
p^2 divides a(p-1) for prime p>3. - Alexander Adamchuk, Jul 16 2006
It appears that a(n) = b(n) defined by b(n+1) = b(n)*(n+1)/g(n) + f(n), f(n) = n*f(n-1)/g(n) and g(n) = gcd(b(n)*(n+1), n*f(n-1)), b(1) = f(1) = g(1) = 1, i.e., the recurrent formula of A000254(n) where both terms are divided by their GCD at each step (and remain divided by this factor in the sequel). Is this easy to prove? - M. F. Hasler, Jul 04 2019

Examples

			1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
		

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)

Crossrefs

Differs from A025529 at 7th term.
Cf. A193758.

Programs

  • Magma
    [Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
    
  • Maple
    ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
  • Mathematica
    Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *)
    Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}]  (* Jean-François Alcover, Feb 17 2014 *)
  • PARI
    {h(n) = sum(k=1,n,1/k)};
    for(n=1,50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
    
  • PARI
    A=List(f=1); for(k=1,999, t=[A[k]*(k+1),f*=k]; t/=gcd(t); listput(A,t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019

Formula

a(n) = abs(Stirling1(n+1, 2))/(n-1)!. - Vladeta Jovovic, Jul 06 2004
a(n) = numerator of Integral_{t=0..oo} 1-(1-exp(-t/n))^n dt. - Jean-François Alcover, Feb 17 2014

A174341 a(n) = Numerator of Bernoulli(n, 1) + 1/(n+1).

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, -37, 1, 37, 1, -211, 1, 2311, 1, -407389, 1, 37153, 1, -1181819909, 1, 76977929, 1, -818946931, 1, 277930363757, 1, -84802531453217, 1, 90219075042851, 1, -711223555487930419, 1, 12696640293313423, 1, -6367871182840222481, 1, 35351107998094669831, 1, -83499808737903072705023, 1, 12690449182849194963361, 1
Offset: 0

Views

Author

Paul Curtz, Mar 16 2010

Keywords

Comments

a(n) is numerator of (A164555(n)/A027642(n) + 1/(n+1)).
1/(n+1) and Bernoulli(n,1) are autosequences in the sense that they remain the same (up to sign) under inverse binomial transform. This feature is kept for their sum, a(n)/A174342(n) = 2, 1, 1/2, 1/4, 1/6, 1/6, 1/6, 1/8, 7/90, 1/10, ...
Similar autosequences are also A000045, A001045, A113405, A000975 preceded by two zeros, and A140096.
Conjecture: the numerator of (A164555(n)/(n+1) + A027642(n)/(n+1)^2) is a(n) and the denominator of this fraction is equal to 1 if and only if n+1 is prime or 1. Cf. A309132. - Thomas Ordowski, Jul 09 2019
The "if" part of the conjecture is true: see the theorems in A309132 and A326690. The values of the numerator when n+1 is prime are A327033. - Jonathan Sondow, Aug 15 2019

Crossrefs

Programs

  • Magma
    [2,1] cat [Numerator(Bernoulli(n)+1/(n+1)): n in [2..40]]; // Vincenzo Librandi, Jul 18 2019
  • Maple
    A174341 := proc(n) bernoulli(n,1)+1/(n+1); numer(%) end proc: # R. J. Mathar, Nov 19 2010
  • Mathematica
    a[n_] := Numerator[BernoulliB[n, 1] + 1/(n + 1)];
    Table[a[n], {n, 0, 47}] (* Peter Luschny, Jul 13 2019 *)
  • PARI
    B(n)=if(n!=1, bernfrac(n), -bernfrac(n));
    a(n)=numerator(B(n) + 1/(n + 1));
    for(n=0, 50, print1(a(n),", ")) \\ Indranil Ghosh, Jun 19 2017
    
  • PARI
    a(n)=numerator(bernpol(n, 1) + 1/(n + 1)); \\ Michel Marcus, Jun 26 2025
    
  • Python
    from sympy import bernoulli, Integer
    def a(n): return (bernoulli(n) + 1/Integer(n + 1)).numerator # Indranil Ghosh, Jun 19 2017
    

Extensions

Reformulation of the name by Peter Luschny, Jul 13 2019

A265390 a(n) = lcm_{d|n} tau(d) * Sum_{d|n} 1/tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 3, 3, 11, 3, 9, 3, 25, 11, 9, 3, 33, 3, 9, 9, 137, 3, 33, 3, 33, 9, 9, 3, 75, 11, 9, 25, 33, 3, 27, 3, 147, 9, 9, 9, 121, 3, 9, 9, 75, 3, 27, 3, 33, 33, 9, 3, 411, 11, 33, 9, 33, 3, 75, 9, 75, 9, 9, 3, 99, 3, 9, 33, 1089, 9, 27, 3, 33, 9, 27, 3, 275, 3, 9, 33, 33, 9, 27, 3, 411, 137, 9, 3, 99, 9, 9, 9, 75, 3, 99, 9, 33
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; LCM_{d|6} tau(d) = 4; a(6) = 4/1 + 4/2 + 4/2 + 4/4 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[LCM([NumberOfDivisors(d): d in Divisors(n)]) / NumberOfDivisors(d): d in Divisors(n) ]: n in [1..100]]
    
  • Mathematica
    Table[LCM @@ DivisorSigma[0, Divisors@ n] Sum[1/DivisorSigma[0, d], {d, Divisors@ n}], {n, 74}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    A253139(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ This function from Michel Marcus, Jan 23 2015
    A265390(n) = (A253139(n) * sumdiv(n,d,(1/numdiv(d)))); \\ Antti Karttunen, Nov 24 2017

Formula

a(n) = A253139(n) * Sum_{d|n} 1/A000005(d) = A265391(n) * A253139(n) / A265392(n).
Multiplicative with a(p^e) = A025529(e+1) = (1/1 + 1/2 + 1/3 + ... + 1/(e+1)) * lcm{1, 2, 3, ..., e+1}.

Extensions

More terms from Antti Karttunen, Nov 24 2017

A112810 Records in A110566 (lcm{1,2,...,n}/denominator of harmonic number H(n)).

Original entry on oeis.org

1, 3, 15, 45, 77, 275, 931, 1725, 1935, 5805, 29025, 41175, 166803, 1039533, 1162047, 91801713, 419498967, 2183383175, 19691916585, 216611082435, 2382721906785, 113804487945521, 22211221792244703, 422013214052649357, 425137351586922079, 936039253001457601
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, b]], {n, 10^6}]; t
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(new, ", "); rec = new););} \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A110566(A112809(n)).

Extensions

a(25)-a(26) from Max Alekseyev, Nov 29 2013

A138553 Table read by rows: T(n,k) is the number of divisors of k that are <= n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 1, 3, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 4, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 2, 2, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Suggested by a question from Eric Desbiaux.
The row lengths are the lengths before the pattern for n repeats.
Antidiagonal sums A070824. [From Eric Desbiaux, Dec 10 2009]

Examples

			The first few rows start:
1, [A000012]
1, 2, [A000034]
1, 2, 2, 2, 1, 3, [A083039]
1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, [A083040]
		

Crossrefs

Row lengths A003418, row sums A025529, frequencies in rows A096180.

Programs

  • PARI
    lista(nrows) = {for (n=1, nrows, for (k=1, lcm(vector(n, i, i)), print1(sumdiv(k, d, d <=n), ", ");); print(););} \\ Michel Marcus, Jun 19 2014

Formula

T(n,k) = sum_{i|k, i<=n} 1.

Extensions

Definition corrected by Franklin T. Adams-Watters, Jun 19 2014
Showing 1-10 of 18 results. Next