cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Georgi Guninski

Georgi Guninski's wiki page.

Georgi Guninski has authored 5 sequences.

A182012 Number of graphs on 2n unlabeled nodes all having odd degree.

Original entry on oeis.org

1, 3, 16, 243, 33120, 87723296, 3633057074584, 1967881448329407496, 13670271807937483065795200, 1232069666043220685614640133362240, 1464616584892951614637834432454928487321792, 23331378450474334173960358458324497256118170821672192, 5051222500253499871627935174024445724071241027782979567759187712
Offset: 1

Author

Georgi Guninski, Apr 06 2012

Keywords

Comments

As usual, "graph" means "simple graph, without self-loops or multiple edges".
The graphs on 2n vertices all having odd degrees are just the complements of those having all even degrees. That's why the property of all odd degrees is seldom mentioned. Therefore this sequence is just every second term of A002854. - Brendan McKay, Apr 08 2012

Examples

			The 3 graphs on 4 vertices are [(0, 3), (1, 3), (2, 3)], [(0, 2), (1, 3)], [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]: the tree with root of order 3, the disconnected graph consisting of two complete 2-vertex graphs, and the complete graph.
		

Crossrefs

Cf. A210345, A210346, A000088. Bisection of A002854.

Programs

  • Sage
    def graphsodddegree(MAXN=5):
        """
        requires optional package "nauty"
        """
        an=[]
        for n in range(1,MAXN+1):
            gn=graphs.nauty_geng("%s"%(2*n))
            cac={}
            a=0
            for G in gn:
                d = G.degree_sequence()
                if all(i % 2 for i in d):
                    a += 1
            print('a(%s)=%s'%(n,a))
            an += [a]
        return an

Formula

a(n) = A002854(2n).

Extensions

Terms from a(6) on added from A002854. - N. J. A. Sloane, Apr 08 2012

A171920 Numbers n with at least one solution to n=x*y*z, x+y-z=1 with ordered triples (x,y,z), x,y,z>=1.

Original entry on oeis.org

1, 4, 9, 12, 16, 24, 25, 36, 40, 45, 49, 60, 64, 72, 81, 84, 100, 105, 112, 121, 144, 160, 169, 180, 189, 196, 216, 220, 225, 240, 256, 264, 280, 289, 297, 300, 312, 324, 352, 360, 361, 364, 385, 396, 400, 420, 429, 432, 441, 480, 484, 504, 520, 529, 544, 576
Offset: 1

Author

Georgi Guninski, Oct 23 2010

Keywords

Comments

Supersequence of A000290, i.e., all perfect squares are in the sequence.
Solutions (x,y) are integral points on the elliptic curve x*y*(x+y-1)=n. - Georgi Guninski, Oct 25 2010
From Robert G. Wilson v, Oct 25 2010: (Start)
a(n) != 2 (mod 3) nor {2, 3} (mod 4) nor 3 (mod 5). a(n) == {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57} (mod 60).
Terms which are congruent to {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57} (mod 60) and are not members of the sequence: 21, 37, 52, 57, 61, 69, 76, 85, 96, 97, 109, 117, 120, 124, 129, 132, 136, 141, 145, 156, 157, 165, 172, 177, 181, ..., .
Terms which are congruent to {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57} (mod 60), not prime and are not members of the sequence: 21, 52, 57, 69, 76, 85, 96, 117, 120, 124, 129, 132, 136, 141, 145, 156, 165, 172, 177, 184, 192, 201, ..., .
Nonsquare terms: 12, 24, 40, 45, 60, 72, 84, 105, 112, 160, 180, 189, 216, 220, 240, 264, 280, 297, 300, ..., .
The lesser of twin terms: 24, 360, 624, 840, 960, 1104, 1224, 2184, 2400, 2736, ..., .
Lesser term of a gap of n or 0 if impossible: 24, 0, 1, 12, 4, 0, 105, 16, 72, 0, 25, ..., . (End)
Number of terms less than or equal to 10^n: 1, 3, 17, 84, 423, 2123, 10603, 52144, 253257, ..., . - Robert G. Wilson v, Oct 30 2010

Examples

			n=1 allows a solution (x,y,z)=(1,1,1), and is in the sequence.
n=4 allows solutions (x,y,z)=(1,2,2) and (2,1,2) and is in the sequence.
		

Programs

  • Mathematica
    fQ[n_] := Block[{c = 0, cong = {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57}, dvs = Divisors@ n, dvt, j = 1, k, lmt1, lmt2}, If[ MemberQ[ cong, Mod[n, 60]], lmtj = Length@ dvs + 1; While[j < lmtj, dvt = Divisors[ n/dvs[[j]]]; k = 1; lmtk = Length@ dvt + 1; While[k < lmtk, If[ dvs[[j]] + dvt[[k]] == n/(dvs[[j]]*dvt[[k]]) + 1, c++ ]; k++ ]; j++ ]]; c > 0]; Select[ Range@ 584, fQ] (* Robert G. Wilson v, Oct 25 2010 *)
  • PARI
    is_A171920(n)={ my(L=sqrt(n),yz); fordiv(n,x, x>L & return; fordiv(yz=n/x,y, y>x & break; y*(x+y-1)==yz & return(1)))} \\ M. F. Hasler, Nov 07 2010

Extensions

More terms from Robert G. Wilson v, Oct 25 2010

A171919 Number of solutions to n=x*y*z, x+y-z=1 with ordered triples (x,y,z), x,y,z>=1.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2
Offset: 1

Author

Georgi Guninski, Oct 23 2010

Keywords

Comments

Record values start a(1)=1, a(4)=2, a(112)=3, a(144)=6, a(23400)=8, a(28224)=10.
If n is a perfect square, a(n)>0.
Larger record indices are listed in A181485, and associated values in A181486. - M. F. Hasler, Oct 23 2010
First occurrence of k: 2, 1, 4, 112, 480, 43120, 144, 218880, 23400, ??, 28224, ??, 373464, ??, 247104, ??, 604800, ??, 83010312, ??, 26812800, ..., . - Robert G. Wilson v, Oct 30 2010
a(388778796252000) = 38.

Examples

			For n=4, the a(4)=2 solutions are (x,y,z)=(1,2,2) and (2,1,2).
For n=12, the a(12)=1 solution is (x,y,z)=(2,2,3).
		

Crossrefs

Programs

  • Maple
    A := proc(n) local a,dvs,x,y,z,dvsyz; a :=0 ; dvs := numtheory[divisors](n) ; for x in dvs do yz := n/x ; dvsyz := numtheory[divisors](yz) ; for y in dvsyz do z := yz/y ; if x+y-z=1 then a := a+1 ; fi; end do; end do:
    return a; end proc: seq(A(n),n=1..100) ; # R. J. Mathar, Oct 23 2010
  • Mathematica
    f[n_] := Block[{c = 0, cong = {0, 1, 4, 9, 12, 16, 21, 24, 25, 36, 37, 40, 45, 49, 52, 57}, dvs = Divisors@ n, dvt, j = 1, k, lmt1, lmt2}, If[ MemberQ[ cong, Mod[n, 60]], lmtj = Length@ dvs + 1; While[j < lmtj, dvt = Divisors[ n/dvs[[j]]]; k = 1; lmtk = Length@ dvt + 1; While[k < lmtk, If[ dvs[[j]] + dvt[[k]] == n/(dvs[[j]]*dvt[[k]]) + 1, c++ ]; k++ ]; j++ ]]; c]; Array[f, 105] (* Robert G. Wilson v, Oct 24 2010 *)
  • PARI
    A171919(n)={ my(c=0,t); fordiv(n, z, fordiv( t=n/z, y, y>z & break; y*(z+1-y)==t & c++) ); c} /* can be improved by restricting to x<=y and counting twice if xM. F. Hasler, Oct 23 2010

Extensions

Some more values from M. F. Hasler, Oct 23 2010

A175841 Fast "exotic addition" a o b = [ a[1]+b[1], a[1]*b[2]+a[2]*b[1] ].

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 30, 64, 72, 120, 130, 288, 300, 420, 434, 1024, 1040, 1296, 1314, 2400, 2420, 2860, 2882, 6912, 6936, 7800, 7826, 11760, 11788, 13020, 13050, 32768, 32800, 35360, 35394, 46656, 46692, 49932, 49970, 96000, 96040, 101640, 101682
Offset: 1

Author

Georgi Guninski, Sep 21 2010

Keywords

Comments

Define binary operation "o" on pairs of vectors a,b: a o b = [ a[1]+b[1], a[1]*b[2]+a[2]*b[1] ], define scalar multiplication "x" on vector p: 2n x p = (n x p) o (n x p) (2n+1) x p = ((n x p) o (n x p)) o p 1 x p = p. Sequence is: a(n) = (n x p)[2] for p=[1,1] (the first component is n). Other sequences with o associative?

Examples

			Set p=[1,1], a(2)=o(p,p) [2] = [1+1,1*1+1*1] [2]=[2,2] [2]=2; a(3)=o(o(p,p),p) [2]=o([2,2],[1,1]) [2] =[2+1,2*1+1*2] [2] = [3,4] [2] = 4 (note that computation is fast as in fast exponentiation because of the definition of x).
		

Programs

  • PARI
    \\ code by M. F. Hasler |vector(20,i,a(i)[2])|
    addi(x,y)=[x[1]+y[1],x[1]*y[2]+x[2]*y[1]];
    a(n,poi=[1,1])=if(n<=1,poi,if(n%2,n==1&return(poi);addi(a(n-1,poi),poi),poi=a(n\2,poi);addi(poi,poi)))

A180435 a(n) = a(n-1)*2^n+n, a(0)=1.

Original entry on oeis.org

1, 3, 14, 115, 1844, 59013, 3776838, 483435271, 123759429384, 63364827844617, 64885583712887818, 132885675443994251275, 544299726618600453222412, 4458903360459574912797999117, 73054672657769675371282417532942
Offset: 0

Author

Georgi Guninski, Sep 05 2010

Keywords

Crossrefs

Cf. A010842.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a*2^(n+1)+n+1}; Transpose[NestList[nxt,{0,1},20]] [[2]] (* Harvey P. Dale, Apr 05 2015 *)
  • PARI
    a(n)=if(n<=0,1, a(n-1)*2^n+n )

Formula

a(n+1) = (2^(n + 1) + 1)*a(n) - 2^n*a(n - 1) + 1.
a(n+1) = ((a(n - 2) + 4*a(n - 1) + 4)*a(n) - 2*a(n - 1)^2 - 4*a(n)^2 + a(n - 2) - 4*a(n - 1))/(a(n - 2) - 2*a(n - 1)).
a(n) = 2^(n*(n+1)/2) + sum_{k=1..n} 2^( (n+k+1)*(n-k)/2 ) * k. - Max Alekseyev, Sep 05 2010

Extensions

Minor edits by N. J. A. Sloane, Sep 05 2010