A182012 Number of graphs on 2n unlabeled nodes all having odd degree.
1, 3, 16, 243, 33120, 87723296, 3633057074584, 1967881448329407496, 13670271807937483065795200, 1232069666043220685614640133362240, 1464616584892951614637834432454928487321792, 23331378450474334173960358458324497256118170821672192, 5051222500253499871627935174024445724071241027782979567759187712
Offset: 1
Examples
The 3 graphs on 4 vertices are [(0, 3), (1, 3), (2, 3)], [(0, 2), (1, 3)], [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]: the tree with root of order 3, the disconnected graph consisting of two complete 2-vertex graphs, and the complete graph.
Links
- Sequence Fans Mailing List, Discussion, April 2012.
- N. J. A. Sloane, The 16 graphs on 6 nodes
Programs
-
Sage
def graphsodddegree(MAXN=5): """ requires optional package "nauty" """ an=[] for n in range(1,MAXN+1): gn=graphs.nauty_geng("%s"%(2*n)) cac={} a=0 for G in gn: d = G.degree_sequence() if all(i % 2 for i in d): a += 1 print('a(%s)=%s'%(n,a)) an += [a] return an
Formula
a(n) = A002854(2n).
Extensions
Terms from a(6) on added from A002854. - N. J. A. Sloane, Apr 08 2012
Comments