A180000 a(n) = lcm{1,2,...,n} / swinging_factorial(n) = A003418(n) / A056040(n).
1, 1, 1, 1, 2, 2, 3, 3, 12, 4, 10, 10, 30, 30, 105, 7, 56, 56, 252, 252, 1260, 60, 330, 330, 1980, 396, 2574, 286, 2002, 2002, 15015, 15015, 240240, 7280, 61880, 1768, 15912, 15912, 151164, 3876, 38760, 38760, 406980, 406980, 4476780, 99484, 1144066
Offset: 0
Keywords
Links
- Peter Luschny, Table of n, a(n) for n = 0..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Programs
-
Maple
a := proc(n) local A014963, k; A014963 := proc(n) if n < 2 then 1 else numtheory[factorset](n); if 1 < nops(%) then 1 else op(%) fi fi end; mul(A014963(k)*(k/2)^((-1)^k), k=1..n)/2^n end; # Also: A180000 := proc(n) local lcm, sf; lcm := ilcm(seq(i,i=1..n)); sf := n!/iquo(n,2)!^2; lcm/sf end;
-
Mathematica
a[0] = 1; a[n_] := LCM @@ Range[n] / (n! / Floor[n/2]!^2); Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Jul 23 2013 *)
-
PARI
L=1; X(n)={ ispower(n, , &n);if(isprime(n),n,1); } Y(n)={ a=X(n); b=if(bitand(1,n),a,a*(n/2)^2); L=(b*L)/n; } A180000_list(n)={ L=1; vector(n,m,Y(m)); } \\ for n>0
-
Sage
def Exp(m,n) : s = 0; p = m; q = n//p while q > 0 : if is_even(q) : s = s + 1 p = p * m q = n//p return s def A180000(n) : A = [1,1,1,1,2,2,3,3,12] if n < 9 : return A[n] R = []; r = isqrt(n) P = Primes(); p = P.first() while p <= n//2 : if p <= r : R.append(p^Exp(p,n)) elif p <= n//3 : if is_even(n//p) : R.append(p) else : R.append(p) p = P.next(p) return mul(x for x in R)
Formula
a(n) = 2^(-n)*Product_{1<=k<=n} A014963(k)*(k/2)^((-1)^k).
Comments