cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049537 Values of k for which A075059(k) = A003418(k) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 19, 20, 21, 22, 25, 26, 31, 47, 48, 89, 90, 91, 92, 93, 94, 95, 96, 127, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 1369, 1370, 1371, 1372, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258, 2259, 2260, 2261, 2262, 2263, 2264, 2265, 2266, 3271, 3272, 3273, 3274, 3275, 3276, 3277, 3278, 3279, 3280, 3281, 3282, 3283, 3284, 3285, 3286, 3287
Offset: 1

Views

Author

Keywords

Examples

			8 is not in the sequence because A075059(8) = 1 + A003418(8) = 1 + lcm(1, 2, ..., 8) = 841 = 29^2 is not prime.
127 is in the sequence because A075059(127) = 1 + A003418(127) = 1 + lcm(1, 2, ..., 127) = 6676878045498705789701874602220118271269436344024536001 is prime.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range[250], PrimeQ[LCM@@Range[#]+1]&]] (* Harvey P. Dale, Nov 15 2011 *)
  • PARI
    isok(n) = isprime(lcm(vector(n, i, i))+1); \\ Michel Marcus, Feb 25 2014

Extensions

a(43)-a(57) from Ray Chandler, Jan 16 2009
a(1)=0 prepended and a(58)-a(86) added by Max Alekseyev, Sep 04 2015

A075061 Triangle in A075059 read by rows.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 13, 14, 15, 16, 61, 62, 63, 64, 65, 61, 62, 63, 64, 65, 66, 421, 422, 423, 424, 425, 426, 427, 841, 842, 843, 844, 845, 846, 847, 848, 2521, 2522, 2523, 2524, 2525, 2526, 2527, 2528, 2529, 2521, 2522, 2523, 2524, 2525, 2526, 2527, 2528, 2529
Offset: 1

Views

Author

Amarnath Murthy, Sep 08 2002

Keywords

Examples

			2;
3 4;
7 8 9;
13 14 15 16;
61 62 63 64 65;
61 62 63 64 65 66;
...
		

Crossrefs

Formula

T(n,k+1)=T(n,k)+1. T(n,0)=A075059(n). - R. J. Mathar, Mar 01 2007

Extensions

More terms from R. J. Mathar, Mar 01 2007

A075062 Row sums of triangle in A075059.

Original entry on oeis.org

2, 7, 24, 58, 315, 381, 2968, 6756, 22725, 25255, 304986, 332718, 4684771, 5045145, 5405520, 11531656, 208288233, 220540491, 4423058830, 4655851410, 4888643991, 5121436573, 123147264516, 128501493420, 669278610325, 696049754751
Offset: 1

Views

Author

Amarnath Murthy, Sep 08 2002

Keywords

Comments

For odd n, a(n) is a multiple of n.

Crossrefs

Formula

a(n)=n*A075059(n)+A000217(n-1). - R. J. Mathar, Mar 20 2007

Extensions

More terms from R. J. Mathar, Mar 20 2007

A060401 a(n) = minimal m such that m>n, n divides m, n-1 divides m-1, n-2 divides m-2 and so on down to 1 divides m-n+1.

Original entry on oeis.org

2, 4, 9, 16, 65, 66, 427, 848, 2529, 2530, 27731, 27732, 360373, 360374, 360375, 720736, 12252257, 12252258, 232792579, 232792580, 232792581, 232792582, 5354228903, 5354228904, 26771144425, 26771144426, 80313433227, 80313433228, 2329089562829, 2329089562830
Offset: 1

Views

Author

Christopher Burrows (cburrows(AT)math.upenn.edu), Apr 04 2001

Keywords

Comments

A099427(a(n)) = n + 1. - Reinhard Zumkeller, Jul 02 2011

Examples

			a(5) = 65 because 5|65, 4|64, 3|63, 2|62, 1|61 and 65 is minimal.
		

Crossrefs

Rightmost diagonal of triangle in A075059. Cf. A075061, A075062.
Cf. A003418.

Programs

  • Maple
    seq(n+ilcm($1..n),n=1..100); # Robert Israel, Jul 19 2016

Formula

a(n) = n + lcm(seq(i, i=1..n)).
a(n) = n + A003418(n). - Robert Israel, Jul 19 2016

A070858 Smallest prime == 1 mod L, where L = LCM of 1 to n.

Original entry on oeis.org

2, 3, 7, 13, 61, 61, 421, 2521, 2521, 2521, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 85765681, 85765681, 232792561, 232792561, 232792561, 232792561, 10708457761, 10708457761, 26771144401, 26771144401, 401567166001, 401567166001, 18632716502401, 18632716502401
Offset: 1

Views

Author

Amarnath Murthy, May 16 2002

Keywords

Comments

Beginning with 3, smallest prime p = a(n) such that p + k is divisible by k + 1 for each k = 1, 2, ..., n. For example: 61 --> 62, 63, 64, 65 and 66 are divisible respectively by 2, 3, 4, 5 and 6. - Robin Garcia, Jul 23 2012

Crossrefs

Programs

  • Maple
    A070858 := proc(n)
        local l,p;
        l := ilcm(seq(i,i=1..n)) ;
        for p from 1 by l do
            if isprime(p) then
                return p;
            end if;
        end do:
    end proc; # R. J. Mathar, Jun 25 2013
  • Mathematica
    a[n_] := Module[{m = 1, lcm = LCM @@ Range[n]}, While[!PrimeQ[m], m += lcm]; m]; Array[a, 30] (* Amiram Eldar, Mar 15 2025 *)
  • PARI
    a(n)=my(L=lcm(vector(n,i,i)),k=1);while(!ispseudoprime(k+=L),); k \\ Charles R Greathouse IV, Jun 25 2013

Extensions

More terms from Sascha Kurz, Feb 02 2003

A249051 The smallest integer > 1 of exactly n consecutive integers divisible respectively by the first n natural numbers (A000027), or 0 if no such number exists.

Original entry on oeis.org

2, 3, 7, 13, 0, 61, 421, 841, 0, 2521, 0, 27721, 0, 0, 360361, 720721, 0, 12252241, 0, 0, 0, 232792561, 0, 5354228881, 0, 26771144401, 0, 80313433201, 0, 2329089562801, 72201776446801, 0, 0, 0, 0, 144403552893601, 0, 0, 0, 5342931457063201, 0
Offset: 1

Views

Author

Robert G. Wilson v, Oct 30 2014

Keywords

Comments

For all n > 1 and a(n) # 0, a(n) == 1 (mod p#), where p# are the primorial numbers (A034386).
When a(n) is not 0, a(n) = A075059(n).
a(n) = 0 when n is a member of A080765.

Examples

			a(3) = 7 because the smallest k such that 1|k, 2|k+1, 3|k+2, and 4 does not divide k+3 is 7.
a(4) = 13 because the smallest k such that 1|k, 2|k+1, 3|k+2, 4|k+3, and 5 does not divide k+4 is 13.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{lcm = LCM @@ Range@ n}, If[ lcm == LCM @@ Range[n + 1], 0, lcm + 1]]; Array[ f, 42] (* Robert G. Wilson v, Nov 13 2014 *)

Extensions

a(5) corrected (0, not 181) by Jon Perry, Nov 05 2014
Sequence corrected by Robert G. Wilson v, Nov 13 2014

A254078 a(n) is the number of steps after which n variables with increasing value ranges all have equal values when the values of all variables are decreased by 1 at each step and the value is set to the maximum value again when the resulting value would be 0.

Original entry on oeis.org

4, 10, 58, 58, 418, 838, 2518, 2518, 27718, 27718, 360358, 360358, 360358, 720718, 12252238, 12252238, 232792558, 232792558, 232792558, 232792558, 5354228878, 5354228878, 26771144398, 26771144398, 80313433198, 80313433198, 2329089562798
Offset: 2

Views

Author

Felix Fröhlich, Jan 25 2015

Keywords

Comments

The k-th variable can take k+1 different values.
From Charlie Neder, Oct 01 2018: (Start)
a(n) is the smallest k congruent to m-2 modulo m for 2 <= m <= n+1.
Proof: All variables will be equal for the first time precisely when they all are equal to 2, in which case each variable has changed from its maximum value m to 2. Additionally, this k is lcm(2,3,...,m) - 2, since advancing two more steps will return all variables to their maximum values.
Adding a variable that only takes one value {1} results in A070198 (LCM - 1). (End)

Examples

			In case of two variables, the first can take two values (1 and 2) and the second three values (1, 2 and 3). Performing the operation on the variables generates sequences of values 2, 1, 2, 1, 2, 1, ... for first variable and 3, 2, 1, 3, 2, 1, ... for second variable. After four steps, the value of both variables is 2, so a(2) = 4.
		

Crossrefs

Cf. A070198 (LCM - 1), A003418 (LCM), A075059 (LCM + 1).

Programs

  • PARI
    a(n) = my(v=vector(n, x, x++), w=v, i=0); while(1, if(vecmax(v)==vecmin(v), return(i)); for(k=1, #v, if(v[k]==1, v[k]=w[k], v[k]--)); i++) \\ Felix Fröhlich, Feb 19 2017
    
  • Python
    from math import gcd
    lcm = 2
    for n in range(3,53):
      lcm *= n // gcd(lcm,n)
      print(n-1,lcm-2) # Charlie Neder, Oct 02 2018

Formula

a(n) = A003418(n+1) - 2. - Charlie Neder, Oct 02 2018

Extensions

Value of a(6) corrected and more terms from Felix Fröhlich, Mar 25 2015
Illustration and program replaced with improved versions by Felix Fröhlich, Feb 19 2017
Corrected and extended by Charlie Neder, Oct 01 2018
Showing 1-7 of 7 results.