cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035095 Smallest prime congruent to 1 (mod prime(n)).

Original entry on oeis.org

3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1

Views

Author

Keywords

Comments

This is a version of the "least prime in special arithmetic progressions" problem.
Smallest numbers m such that largest prime factor of Phi(m) = prime(n), the n-th prime, also seems to be prime and identical to n-th term of A035095. See A068211, A068212, A065966: Min[x : A068211(x)=prime(n)] = A035095(n); e.g., Phi(a(7)) = Phi(103) = 2*3*17, of which 17 = p(7) is the largest prime factor, arising first here.
It appears that A035095, A066674, A125878 are probably all the same, but see the comments in A066674. - N. J. A. Sloane, Jan 05 2013
Minimum of the smallest prime factors of F(n,i) = (i^prime(n)-1)/(i-1), when i runs through all integers in [2, prime(n)]. Every prime factor of F(n,i) is congruent to 1 modulo prime(n). - Vladimir Shevelev, Nov 26 2014
Conjecture: a(n) is the smallest prime p such that gpf(p-1) = prime(n). See A023503. - Thomas Ordowski, Aug 06 2017
For n>1, a(n) is the smallest prime congruent to 1 mod (2*prime(n)). - Chai Wah Wu, Apr 28 2025

Examples

			a(8) = 191 because in the prime(8)k+1 = 19k+1 sequence, 191 is the smallest prime.
		

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd 1 (reprinted Chelsea 1953).
  • E. C. Titchmarsh, A divisor problem, Renc. Circ. Math. Palermo, 54 (1930) pp. 414-429.
  • P. Turan, Über Primzahlen der arithmetischen Progression, Acta Sci. Math. (Szeged), 8 (1936/37) pp. 226-235.

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n]}, r = 1 + p; While[ !PrimeQ[r], r += p]; r]; Array[a, 51] (* Jean-François Alcover, Sep 20 2011, after PARI *)
    a[n_]:=If[n<2,3,Block[{p=Prime[n]},r=1+2*p;While[!PrimeQ[r],r+=2*p]];r];Array[a,51] (* Zak Seidov, Dec 14 2013 *)
  • PARI
    a(n)=local(p,r);p=prime(n);r=1;while(!isprime(r),r+=p);r
    
  • PARI
    {my(N=66); forprime(p=2, , forprime(q=p+1,10^10, if((q-1)%p==0, print1(q,", "); N-=1; break)); if(N==0,break)); } \\ Joerg Arndt, May 27 2016
    
  • Python
    from itertools import count
    from sympy import prime, isprime
    def A035095(n): return 3 if n==1 else next(filter(isprime,count((p:=prime(n)<<1)+1,p))) # Chai Wah Wu, Apr 28 2025

Formula

According to a long-standing conjecture (see the 1979 Wagstaff reference), a(n) <= prime(n)^2 + 1. This would be sufficient to imply that a(n) is the smallest prime such that greatest prime divisor of a(n)-1 is prime(n), the n-th prime: A006530(a(n)-1) = A000040(n). This in turn would be sufficient to imply that no value occurs twice in this sequence. - Franklin T. Adams-Watters, Jun 18 2010
a(n) = 1 + A035096(n)*A000040(n). - Zak Seidov, Dec 27 2013

Extensions

Edited by Franklin T. Adams-Watters, Jun 18 2010
Minor edits by N. J. A. Sloane, Jun 27 2010
Edited by N. J. A. Sloane, Jan 05 2013

A049536 Primes of the form lcm(1, ..., n) + 1 = A003418(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 2521, 232792561, 26771144401, 72201776446801, 442720643463713815201, 718766754945489455304472257065075294401, 6676878045498705789701874602220118271269436344024536001
Offset: 1

Views

Author

Keywords

Examples

			Lcm(9) + 1 = lcm(10) + 1 = 2521, a prime.
		

Crossrefs

Subsequence of A070858.

Programs

  • Mathematica
    Select[Table[LCM@@Range[n]+1,{n,150}],PrimeQ]//Union (* Harvey P. Dale, May 31 2017 *)
  • PARI
    N=1; print1(2); for(n=1,1e3, if(isprimepower(n,&p), N*=p; if(isprime(N+1), print1(", "N+1)))) \\ Charles R Greathouse IV, Nov 18 2015

A035091 Smallest prime == 1 mod (n^2).

Original entry on oeis.org

2, 5, 19, 17, 101, 37, 197, 193, 163, 101, 727, 433, 677, 197, 1801, 257, 3469, 1297, 10831, 401, 883, 1453, 12697, 577, 11251, 677, 1459, 3137, 10093, 1801, 15377, 12289, 2179, 3469, 7351, 1297, 5477, 18773, 9127, 1601, 16811, 3529, 22189, 11617
Offset: 1

Views

Author

Keywords

Comments

Smallest prime of form (n^2)*k+1, i.e., an arithmetic progression with n^2 differences; k is the subscript of the progressions.

Examples

			a(5) = 101 because in 5^2k + 1 = 25k + 1 progression k=4 generates the smallest prime (this is 101) and 26, 51, and 76 are composite.
		

Crossrefs

Analogous case is A034694. Special case is A002496.

Programs

  • Mathematica
    With[{prs=Prime[Range[2500]]},Flatten[Table[Select[prs,Mod[#-1,n^2]==0&,1],{n,50}]]] (* Harvey P. Dale, Sep 22 2021 *)
  • PARI
    a(n) = if(n == 1, 2, my(s = n^2); forprime(p = 1, , if(p % s == 1, return(p)))); \\ Amiram Eldar, Mar 16 2025

A083685 a(n) is the smallest prime of the form k*lcm(1..n) - 1.

Original entry on oeis.org

2, 3, 5, 11, 59, 59, 419, 839, 5039, 5039, 55439, 55439, 1081079, 1081079, 1081079, 1441439, 24504479, 24504479, 232792559, 232792559, 232792559, 232792559, 5354228879, 5354228879, 53542288799, 53542288799, 1044074631599
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 15 2003

Keywords

Examples

			a(9) = 5039: lcm(1..9) = 2520; 2519 is not a prime but 2*2520 - 1 = 5039 is a prime.
		

Crossrefs

Cf. A070858.

Programs

  • Mathematica
    spf[n_]:=Module[{c=LCM@@Range[n],k=1},While[!PrimeQ[k*c-1],k++];k*c-1]; Array[spf,30] (* Harvey P. Dale, Jan 15 2022 *)
  • PARI
    a(n) = {my(lcmn = lcm(vector(n, k, k)), k = 1); while(!isprime(p = k*lcmn-1), k++); p;} \\ Michel Marcus, Mar 15 2018

Extensions

Corrected and extended by Vladeta Jovovic, Jun 16 2003

A272857 Least k>1 such that the Euler totient function of powers k^e, 1 <= e <= n, are divisible by the number their divisors, d(k^e).

Original entry on oeis.org

3, 3, 13, 61, 61, 421, 2521, 2521, 2521, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 85765681, 85765681, 232792561, 232792561, 232792561, 232792561
Offset: 1

Views

Author

Paolo P. Lava, May 12 2016

Keywords

Comments

a(22) <= 10708457761. - Amiram Eldar, May 27 2024

Examples

			phi(3) / d(3) = 2 / 2 = 1, phi(3^2) / d(3^2) = 6 / 3 = 2 but phi(3^3) / d(3^3) = 18 / 4 = 9 / 2;
phi(13) / d(13) = 12 / 2 = 6, phi(13^2) / d(13^2) = 156 / 3 = 52, phi(13^3) / d(13^3) = 2028 / 4 = 507 but phi(13^4) / d(13^4) = 26364 / 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a, j, k, ok, p; global n; a:=2;
    for k from 1 to q do for n from a to q do ok:=1;
    for j from 1 to k do if not type(phi(n^j)/tau(n^j), integer) then ok:=0; break; fi; od;
    if ok=1 then a:=n; print(n); break; fi; od; od; end: P(10^9);
Showing 1-5 of 5 results.