A035095 Smallest prime congruent to 1 (mod prime(n)).
3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1
Keywords
Examples
a(8) = 191 because in the prime(8)k+1 = 19k+1 sequence, 191 is the smallest prime.
References
- E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd 1 (reprinted Chelsea 1953).
- E. C. Titchmarsh, A divisor problem, Renc. Circ. Math. Palermo, 54 (1930) pp. 414-429.
- P. Turan, Über Primzahlen der arithmetischen Progression, Acta Sci. Math. (Szeged), 8 (1936/37) pp. 226-235.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Erdős, On some application of Brun's method, Acta Sci. Math (Szeged), v. 13, 1949, pp. 57-63.
- A. Granville and C. Pomerance, On the least prime in certain arithmetic progressions
- A. Granville and C. Pomerance, On the least prime in certain arithmetic progressions J. Lond Math Soc s2-41 (2) (1990), pp. 193-200.
- D. R. Heath-Brown, almost-primes in arithmetic progressions in short intervals, Math Proc Cambr. Phil Soc v 83 (1978), pp. 357-375.
- D. R. Heath-Brown, Siegel zeros and the least prime in arithmetic progression, Quart. J. of Math 41 (49) (1990), pp. 405-418.
- H.-J. Kanold, Uber Primzahlen in arithmetischen Folgen, Math. Ann. v 156 (1964) pp. 393-395.
- U. V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math (N.S.) v 15 (57) (1944), pp 139-178. MR0012111
- C. Pomerance, A note on the least prime in an arithmetic progression J. Number Theory 12 (2) (1980), pp. 218-223.
- K. Prachar, Uber die kleinste Primzahl in einer arithmetischen Reihe, J Reine Angew Math. 206 (1961) pp. 3-4.
- A. Schinzel, Remark on the paper of K. Prachar Uber die kleinste.., J. Reine Angew Math. v 210 (1962) pp. 122-122.
- S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp., 32 (1978) pp. 583-591.
- S. S. Wagstaff, Jr, Greatest of the Least Primes in Arithmetic Progressions Having a Given Modulus, Math. Comp., 33 (147) (1979) pp. 1073-1080.
- Index entries for sequences related to primes in arithmetic progressions
Crossrefs
Programs
-
Mathematica
a[n_] := Block[{p = Prime[n]}, r = 1 + p; While[ !PrimeQ[r], r += p]; r]; Array[a, 51] (* Jean-François Alcover, Sep 20 2011, after PARI *) a[n_]:=If[n<2,3,Block[{p=Prime[n]},r=1+2*p;While[!PrimeQ[r],r+=2*p]];r];Array[a,51] (* Zak Seidov, Dec 14 2013 *)
-
PARI
a(n)=local(p,r);p=prime(n);r=1;while(!isprime(r),r+=p);r
-
PARI
{my(N=66); forprime(p=2, , forprime(q=p+1,10^10, if((q-1)%p==0, print1(q,", "); N-=1; break)); if(N==0,break)); } \\ Joerg Arndt, May 27 2016
-
Python
from itertools import count from sympy import prime, isprime def A035095(n): return 3 if n==1 else next(filter(isprime,count((p:=prime(n)<<1)+1,p))) # Chai Wah Wu, Apr 28 2025
Formula
According to a long-standing conjecture (see the 1979 Wagstaff reference), a(n) <= prime(n)^2 + 1. This would be sufficient to imply that a(n) is the smallest prime such that greatest prime divisor of a(n)-1 is prime(n), the n-th prime: A006530(a(n)-1) = A000040(n). This in turn would be sufficient to imply that no value occurs twice in this sequence. - Franklin T. Adams-Watters, Jun 18 2010
Extensions
Edited by Franklin T. Adams-Watters, Jun 18 2010
Minor edits by N. J. A. Sloane, Jun 27 2010
Edited by N. J. A. Sloane, Jan 05 2013
Comments