A336280 Number of consecutive primes of the form k*prime(n) + 1, starting with the least such prime A035095(n), that divides the Wendt determinant A048954(prime(n)).
1, 1, 2, 1, 4, 3, 2, 3, 2, 3, 1, 5, 6, 2, 6, 3, 3, 3, 1, 6, 3, 5, 5, 7, 5, 5, 6, 7, 4, 7, 5, 10, 10, 4, 4, 6, 10, 3, 4, 12, 11, 5, 7, 8, 7, 8, 11, 4, 4, 4, 14, 7, 11, 7, 13, 11, 13, 7, 18, 18, 6, 7, 17, 12, 9, 7, 9, 14, 12, 9, 16, 14, 11, 13, 10
Offset: 1
Keywords
Examples
a(6) = 3 gives p = prime(6) = 13 and W(13) = 3^6*53^2*79^2*131^2*521^2*8191. The sequence of primes of the form q = k*13 + 1, starting with the least such prime 53 that divide W(11) is (53, 79, 131). The sequence has 3 terms.
Links
- Gerard P. Michon, Factorization of Wendt's Determinant (table for n=1 to 114).
- Eric Weisstein's World of Mathematics, Circulant matrix .
- Wikipedia, Circulant matrix .
Programs
-
Mathematica
w[n_] := Module[{x}, Resultant[x^n-1, (1+x)^n-1, x]]; k[n_, m_] := Module[{p=Prime@n, q=0, lst={}}, Do[q++; While[! PrimeQ[p*q+1], q++]; AppendTo[lst, q], {m}]; lst]; lst1 = {}; Do[lst=k[n, 50]*Prime[n]+1; m = 1; Do[If[IntegerQ[w[Prime[n]]/lst[[m]]]&&m<=Length@lst, m++, Break[]], {Length@lst}]; AppendTo[lst1, m-1], {n, 1, 75}]; lst1
Comments