cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163981 a(n) is the smallest prime of the form prime(n+1)*k - prime(n), k >= 1, where prime(n) is the n-th prime.

Original entry on oeis.org

7, 2, 2, 37, 2, 89, 2, 73, 151, 2, 43, 127, 2, 239, 59, 419, 2, 73, 359, 2, 401, 419, 1163, 881, 307, 2, 967, 2, 569, 3697, 397, 691, 2, 457, 2, 163, 821, 839, 179, 1259, 2, 2111, 2, 1777, 2, 223, 3803, 3863, 2, 3499, 1201, 2, 2269, 263, 269, 1889, 2, 283, 1409, 2, 2647
Offset: 1

Views

Author

Leroy Quet, Aug 07 2009

Keywords

Comments

a(n) = 2 if and only if n is in A029707. - Robert Israel, Jan 16 2019

Crossrefs

Contains A085704.

Programs

  • Maple
    a := proc (n) local k: for k while isprime(ithprime(n+1)*k-ithprime(n)) = false do end do: ithprime(n+1)*k-ithprime(n) end proc: seq(a(n), n = 1 .. 65); # Emeric Deutsch, Aug 10 2009
  • Mathematica
    a[n_] := Module[{p, q, r}, For[p = Prime[n]; q = Prime[n + 1]; k = 1, True, k++, If[PrimeQ[r = q k - p], Return[r]]]];
    Array[a, 100] (* Jean-François Alcover, Aug 28 2020 *)
  • PARI
    a(n) = my(k=1); while (!isprime(p=prime(n+1)*k - prime(n)), k++); p; \\ Michel Marcus, Jul 02 2021
  • Python
    from sympy import isprime, nextprime, prime
    def a(n):
        pn = prime(n); pn1 = nextprime(pn); k = 1
        while not isprime(pn1*k - pn): k += 1
        return pn1*k - pn
    print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Jul 02 2021
    

Extensions

Extended by Emeric Deutsch, Aug 10 2009

A287615 Let r = prime(n). Then a(n) is the smallest prime p such that there is a prime q with p > q > r and p mod q = r.

Original entry on oeis.org

5, 13, 19, 29, 37, 47, 79, 101, 97, 103, 113, 131, 127, 137, 181, 199, 181, 227, 233, 229, 239, 257, 277, 283, 311, 307, 317, 409, 383, 367, 389, 409, 439, 521, 463, 509, 491, 509, 613, 571, 541, 563, 577, 587, 619, 653, 677, 677, 709, 743, 787, 853, 743, 877
Offset: 1

Views

Author

Ophir Spector, May 27 2017

Keywords

Comments

Prime p such that p = k * q + r, r < q < p primes; k even multiples such that p is minimal.

Examples

			a(1) = 5, as r = 2, q = 3, p = 5, is the smallest prime such that 5 = 2 mod 3.
a(9) = 97, as r = 23, q = 37, p = 97.  97 = 2 * 37 + 23 is smaller than 139 = 4 * 29 + 23 (A129919).
		

Crossrefs

Cf. A129919.

Programs

  • Maple
    f:= proc(n) local p,q,r;
      r:= ithprime(n);
      p:= r+1;
      do
       p:= nextprime(p);
       q:= max(numtheory:-factorset(p-r));
       if q > r then return p fi
      od:
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 05 2017
  • Mathematica
    a[n_] := Module[{p, q, r}, r = Prime[n]; p = r+1; While[True, p = NextPrime[p]; q = Max[FactorInteger[p-r][[All, 1]]]; If[q>r, Return[p]]] ];
    Array[a, 100] (* Jean-François Alcover, Oct 06 2020, after Robert Israel *)
  • PARI
    findfirstTerms(n)=my(t:small=0,a:vec=[]);forprime(r=2,,forprime(p=r+2,,forprime(q=r+2,p-2,if(p%q==r,a=concat(a,[p]);if(t++==n,a[1]-=2;return(a),break(2)))))) \\ R. J. Cano, Jun 06 2017
    
  • PARI
    first(n)=my(v=vector(n),best,k=1); v[1]=5; forprime(r=3,prime(n), best=oo; forprime(q=r+2,, if(q>=best, v[k++]=best; next(2)); forstep(p=r+2*q,best,2*q, if(isprime(p), best=p; break)))); v \\ Charles R Greathouse IV, Jun 07 2017

A381532 Smallest integer k>0 such that prime(n) + k*prime(n+1) is prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 6, 6, 4, 8, 4, 6, 2, 2, 10, 10, 2, 6, 12, 6, 4, 6, 4, 2, 14, 2, 2, 6, 6, 2, 2, 6, 6, 6, 20, 6, 4, 8, 4, 16, 2, 2, 2, 2, 8, 10, 4, 2, 6, 6, 6, 14, 2, 4, 10, 6, 2, 6, 2, 6, 18, 2, 2, 2, 2, 12, 10, 2, 6, 6, 4, 2, 22, 4, 6, 10, 12, 6, 8, 8, 12, 2
Offset: 1

Views

Author

Jean-Marc Rebert, Mar 07 2025

Keywords

Examples

			a(1)= 1, because 2 and 3 are consecutive primes and 2 + 1*3 = 5 is prime, and no lesser number has this property.
 p + k*q, where p and q are consecutive primes
 2 + 1* 3 =   5 is prime;
 3 + 2* 5 =  13 is prime;
 5 + 2* 7 =  19 is prime;
 7 + 2*11 =  29 is prime;
		

Crossrefs

Cf. A129919 (resulting primes), A175914 (primes for which k=2), A368691 (primes for which k=4).

Programs

  • Mathematica
    Do[k=0;Until[PrimeQ[Prime[n]+k*Prime[n+1]],k++];a[n]=k,{n,82}];Array[a,82] (* James C. McMahon, Mar 28 2025 *)
  • PARI
    a(n) = my(p=prime(n), q=nextprime(p+1), k=1); while (!isprime(p+k*q), k++); k; \\ Michel Marcus, Mar 09 2025
Showing 1-3 of 3 results.