cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061638 Primes p such that the greatest prime divisor of p-1 is 7.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 281, 337, 379, 421, 449, 491, 631, 673, 701, 757, 883, 1009, 1051, 1373, 1471, 2017, 2269, 2521, 2647, 2689, 2801, 3137, 3361, 3529, 4201, 4481, 5881, 6301, 7001, 7057, 7351, 7561, 7841, 8233, 8821, 10501, 10753, 12097
Offset: 1

Views

Author

Labos Elemer, Jun 13 2001

Keywords

Comments

Prime numbers n for which cos(2*Pi/n) is an algebraic number of 7th degree. - Artur Jasinski, Dec 13 2006

Examples

			For n = {4, 8, 9, 12}, a(n)-1 = {70, 210, 280, 420} = 7*{10, 30, 40, 60}.
		

Crossrefs

The 4th in a family of sequences after A019434(=Fermat-primes), A058383, A061599.

Programs

  • Mathematica
    Select[Prime[Range[2000]],FactorInteger[#-1][[-1,1]] ==7&]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    default(primelimit, 108864001); n=0; forprime (p=3, 108864001, f=factor(p - 1)~; if (f[1, length(f)]==7, write("b061638.txt", n++, " ", p))) \\ Harry J. Smith, Jul 25 2009
    
  • PARI
    list(lim)=my(v=List(), t, t5, t7); lim\=1; lim--; for(a=1, logint(lim\2, 7), t7=2*7^a; for(b=0, logint(lim\t7, 5), t5=5^b*t7; for(c=0, logint(lim\t5, 3), t=3^c*t5; while(t<=lim, if(isprime(t+1), listput(v, t+1)); t<<=1)))); Set(v) \\ Charles R Greathouse IV, Oct 29 2018

Formula

Primes of form 2^a*3^b*5^c*7^d + 1 with a and d > 1.

A125868 Odd numbers k such that cos(2*Pi/k) is an algebraic number of a 5-smooth degree, but not 3-smooth.

Original entry on oeis.org

11, 25, 31, 33, 41, 55, 61, 75, 77, 93, 99, 101, 123, 125, 143, 151, 155, 165, 175, 181, 183, 187, 205, 209, 217, 225, 231, 241, 251, 271, 275, 279, 287, 297, 303, 305, 325, 341, 369, 375, 385, 401, 403, 407, 425, 427, 429, 451, 453, 465, 475, 495, 505, 525
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Comments

A regular polygon of a(n) sides can be constructed if one also has an angle trisector and 5-sector.

Crossrefs

Programs

  • Mathematica
    Do[If[Take[FactorInteger[EulerPhi[2n+1]][[ -1]],1]=={5},Print[2n+1]],{n,1,1000}]

Extensions

Edited by Don Reble, Apr 24 2007
Showing 1-2 of 2 results.