cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A132430 Duplicate of A049537.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 19, 20, 21, 22, 25, 26, 31, 47, 48, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Jonathan Vos Post, Nov 13 2007

Keywords

A051451 a(n) = lcm{ 1,2,...,x } where x is the n-th prime power (A000961).

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 840, 2520, 27720, 360360, 720720, 12252240, 232792560, 5354228880, 26771144400, 80313433200, 2329089562800, 72201776446800, 144403552893600, 5342931457063200, 219060189739591200, 9419588158802421600, 442720643463713815200
Offset: 1

Views

Author

Labos Elemer, Dec 11 1999

Keywords

Comments

This sequence is the list of distinct terms in A003418.
This may be the "smallest" product-based numbering system that has a unique finite representation for every rational number. In this base 1/2 = .1 (1*1/2), 1/3 = .02 (0*1/2 + 2*1/6), 1/5 = .0102 (0*1/2 + 1*1/6 + 0*1/12 + 2*1/60). - Russell Easterly, Oct 03 2001
Partial products of A025473, prime roots of the prime powers.
Conjecture: For every n > 2, there exists a twin prime pair [p, p+2] with p < a(n), such that [a(n)+p, a(n)+p+2] is also a twin prime pair. Example: For n=6 we can take p=11, because for a(6) = 420 is [420+11, 420+13] = [431, 433] also a twin prime pair. This has been verified for 2 < n <= 200. - Mike Winkler, Sep 12 2013, May 09 2014
The prime powers give all values, and do so uniquely. (Other positive integers give repeated values.) - Daniel Forgues, Apr 28 2014
"LCM numeral system": a(n+1) is place value for index n, n >= 0; a(-n+1) is (place value)^(-1) for index n, n < 0. - Daniel Forgues, May 03 2014
Repetitions removed from slowest growing integer series A003418 with integers > 0 converging to 0 in the ring Z^ of profinite integers. Both A003418 and the present sequence may be used as a replacement for the usual "factorial system" for coding profinite integers. - Herbert Eberle, May 01 2016
Every term of this sequence is deeply composite (A095848). Moreover, the terms of this sequence are the "special deeply composite numbers", in analogy to the special highly composite numbers (A106037). A special highly composite number is a highly composite number (A002182) that divides every larger highly composite number. In the same fashion, the deeply composite numbers that divide every larger deeply composite number are just the terms of this sequence. This follows from the formula for deeply composite numbers. - Hal M. Switkay, Jun 08 2021
From Bill McEachen, Apr 28 2023: (Start)
Every term belongs to A025487.
Conjecture: Every term = A001013(j)*A129912(k) for some j,k. (End)

Examples

			lcm[1,...,n] is 2520 for n=9 and 10. The smallest such n's are always prime powers, where A003418 jumps.
		

Crossrefs

Programs

  • Haskell
    a051451 n = a051451_list !! (n-1)
    a051451_list = scanl1 lcm a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Mathematica
    f[n_] := LCM @@ Range@ n; Union@ Array[f, 41] (* Robert G. Wilson v, Jul 11 2011 *)
    Join[{1},LCM@@Range[#]&/@Select[Range[50],PrimePowerQ]] (* Harvey P. Dale, Feb 06 2020 *)
  • PARI
    do(lim)=my(v=primes(primepi(lim)), u=List([1])); forprime(p=2, sqrtint(lim\1), for(e=2, log(lim+.5)\log(p), listput(u, p^e))); v=vecsort(concat(v, Vec(u))); for(i=2,#v,v[i]=lcm(v[i],v[i-1])); v \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {lim=100; n=1; i=1; j=1; until(n==lim, until(a!=j, a=lcm(j,i+1); i++;); j=a; n++; print(n" "a););} \\ Mike Winkler, Sep 07 2013
    
  • PARI
    x=1;for(i=1,100,if(omega(i)==1,x*=factor(i)[1,1])) \\ Florian Baur, Apr 11 2022
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A051451(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024
  • Sage
    def A051451_list(n):
        a = [ ]
        L = [1]
        for i in (1..n):
           a.append(i)
           if (is_prime_power(i) == 1):
               L.append(lcm(a))
        return(L)
    A051451_list(42) # Jani Melik, Jul 07 2022
    

Formula

a(n) = A003418(A000961(n)).
a(n) = A208768(n) + 1. - Reinhard Zumkeller, Mar 01 2012
Sum_{n>=1} 1/a(n) = A064890. - Amiram Eldar, Nov 16 2020

Extensions

Minor edits by Ray Chandler, Jan 16 2009

A049536 Primes of the form lcm(1, ..., n) + 1 = A003418(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 2521, 232792561, 26771144401, 72201776446801, 442720643463713815201, 718766754945489455304472257065075294401, 6676878045498705789701874602220118271269436344024536001
Offset: 1

Views

Author

Keywords

Examples

			Lcm(9) + 1 = lcm(10) + 1 = 2521, a prime.
		

Crossrefs

Subsequence of A070858.

Programs

  • Mathematica
    Select[Table[LCM@@Range[n]+1,{n,150}],PrimeQ]//Union (* Harvey P. Dale, May 31 2017 *)
  • PARI
    N=1; print1(2); for(n=1,1e3, if(isprimepower(n,&p), N*=p; if(isprime(N+1), print1(", "N+1)))) \\ Charles R Greathouse IV, Nov 18 2015

A057824 Primes p such that p+1 is LCM(1,...,m) for some (usually more than one) m.

Original entry on oeis.org

5, 11, 59, 419, 839, 232792559, 5354228879, 2329089562799, 144403552893599, 442720643463713815199, 591133442051411133755680799, 69720375229712477164533808935312303556799
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

Prime numbers of the form A051451(k)-1.
Primes p = LCM(1,...,m) - 1, where m is a prime power. (The prime powers give all values, and do so uniquely.) - Daniel Forgues, Apr 28 2014
This unique prime power m associated with a(n) is m = A385564(n). - Jeppe Stig Nielsen, Jul 09 2025

Examples

			232792559 + 1 = LCM(1,...,m) for m = 19, 20, 21, 22.
		

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, Select[Range[100], PrimePowerQ]] - 1, PrimeQ] (* Amiram Eldar, Aug 18 2024 *)
  • PARI
    L=1; for(n=2,1e3,if(isprimepower(n,&p) && ispseudoprime((L*=p)-1), print1(L-1", "))) \\ Charles R Greathouse IV, Apr 28 2014

A057825 Values of k for which A003418(k) - 1 is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 19, 20, 21, 22, 23, 24, 29, 30, 32, 33, 34, 35, 36, 47, 48, 61, 62, 63, 97, 98, 99, 100, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 233, 234, 235, 236, 237, 238, 307, 308, 309, 310, 401, 402, 403, 404, 405, 406, 407, 408, 887, 888, 889, 890
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

Fewer distinct primes than distinct values of a(n) are generated. So, e.g., k = 97, 98, 99, 100 all correspond to lcm([1..97]) - 1 = 69720375229712477164533808935312303556799, a prime.

Crossrefs

Programs

  • PARI
    isok(k) = ispseudoprime(lcm(vector(k, i, i))-1); \\ Jinyuan Wang, May 02 2020

A051452 a(n) = 1 + lcm(1..k) where k is the n-th prime power A000961(n).

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 841, 2521, 27721, 360361, 720721, 12252241, 232792561, 5354228881, 26771144401, 80313433201, 2329089562801, 72201776446801, 144403552893601, 5342931457063201, 219060189739591201
Offset: 1

Views

Author

Keywords

Comments

From Daniel Forgues, Apr 27 2014: (Start)
Factorizations:
2, 3, 7, 13, 61, 421 are primes;
841 = 29^2;
2521 is prime;
27721 = 19*1459, 360361 = 89*4049, 720721 = 71*10151,
12252241 = 1693*7237;
232792561 is prime;
5354228881 = 6659*804059;
26771144401 is prime;
80313433201 = 331*11239*21589, 2329089562801 = 101*271*2311*36821;
72201776446801 is prime.
Very likely contains an infinite number of primes (see A049536). (End)

Crossrefs

1 + A003418(A000961(n)), corresponds to distinct values of 1 + A003418.

Programs

  • PARI
    print1(2);t=1;for(n=2,100,if(t%n, t=lcm(t,n); print1(", "t+1))) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A051452(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return 1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024

A051454 a(n) is the smallest prime factor of 1 + lcm(1..k) where k is the n-th prime power A000961(n).

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 29, 2521, 19, 89, 71, 1693, 232792561, 6659, 26771144401, 331, 101, 72201776446801, 1801, 173, 54941, 89, 442720643463713815201, 593, 5171, 239, 1222615931, 103, 7265496855919, 6562349363, 4447, 147099357127, 1931
Offset: 1

Views

Author

Keywords

Examples

			1 + lcm(1..8) = 29^2, so its smallest prime divisor is 29; it occurs as the 7th term in the sequence because 8 is the 7th prime power: A000961(7) = 8.
		

Crossrefs

Programs

  • Magma
    a:=[]; lcm:=1; for k in [1..83] do if (k eq 1) or IsPrimePower(k) then lcm:=Lcm(lcm,k); a:=a cat [Factorization(1+lcm)[1][1]]; end if; end for; a; // Jon E. Schoenfield, May 28 2018
    
  • Mathematica
    Join[{2},With[{ppwr=Select[Range[200],PrimePowerQ]},Table[FactorInteger[LCM@@Take[ ppwr,n]+ 1][[1,1]],{n,40}]]] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    a(n) = {my(nb = 1, lc = 1, k = 2); while (nb != n, if (isprimepower(k), nb++; lc = lcm(lc, k)); k++;); vecmin(factor(lc +1)[,1]);} \\ Michel Marcus, May 29 2018
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange, primefactors
    def A051454(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return min(primefactors(1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)))) # Chai Wah Wu, Aug 15 2024

A154525 Primes p such that lcm(1,2,3,...,p-2,p-1,p) + 1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 19, 31, 47, 89, 127, 139, 2251, 3271, 4253, 4373, 4549, 5449, 13331, 37123, 55291
Offset: 1

Views

Author

Lekraj Beedassy, Jan 11 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[#] && PrimeQ[LCM@@Range[#]+1] &] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    isok(p) = isprime(p) && (isprime(lcm(vector(p, i, i)) + 1)); \\ Michel Marcus, Oct 26 2013, Feb 25 2014

Formula

A049537 INTERSECT A000040. - Ray Chandler, Jan 16 2009

Extensions

a(1)=2 inserted and a(8)-a(18) from Ray Chandler, Jan 16 2009
a(19) from Daniel Suteu, Nov 21 2018

A051453 Prime powers such that 1 + lcm(1,2,...,p^w) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 19, 25, 31, 47, 89, 127, 139, 1369, 2251, 3271, 4253, 4373, 4549, 5449, 13331, 37123, 55291, 79633, 105653
Offset: 1

Views

Author

Keywords

Examples

			1 + lcm(1,2,..,89) = 718766754945489455304472257065075294401 is prime.
		

Crossrefs

Programs

  • PARI
    ispp(n) = isprimepower(n) || n==1;
    lista(nn) = {for (n=1, nn, if (ispp(n) && ispseudoprime(1+lcm([1..n])), print1(n, ", ")););} \\ Michel Marcus, Aug 26 2019

Extensions

Corrected and extended by Wouter Meeussen, Apr 18 2003
a(18)-a(22) from Jinyuan Wang, May 02 2020
a(23)-a(24) from Michael S. Branicky, Apr 22 2023
a(25)-a(26) from Michael S. Branicky, Jul 04 2025
Showing 1-9 of 9 results.