A132430 Duplicate of A049537.
0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 19, 20, 21, 22, 25, 26, 31, 47, 48, 89, 90, 91, 92, 93, 94, 95
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
lcm[1,...,n] is 2520 for n=9 and 10. The smallest such n's are always prime powers, where A003418 jumps.
a051451 n = a051451_list !! (n-1) a051451_list = scanl1 lcm a000961_list -- Reinhard Zumkeller, Mar 01 2012
f[n_] := LCM @@ Range@ n; Union@ Array[f, 41] (* Robert G. Wilson v, Jul 11 2011 *) Join[{1},LCM@@Range[#]&/@Select[Range[50],PrimePowerQ]] (* Harvey P. Dale, Feb 06 2020 *)
do(lim)=my(v=primes(primepi(lim)), u=List([1])); forprime(p=2, sqrtint(lim\1), for(e=2, log(lim+.5)\log(p), listput(u, p^e))); v=vecsort(concat(v, Vec(u))); for(i=2,#v,v[i]=lcm(v[i],v[i-1])); v \\ Charles R Greathouse IV, Nov 20 2012
{lim=100; n=1; i=1; j=1; until(n==lim, until(a!=j, a=lcm(j,i+1); i++;); j=a; n++; print(n" "a););} \\ Mike Winkler, Sep 07 2013
x=1;for(i=1,100,if(omega(i)==1,x*=factor(i)[1,1])) \\ Florian Baur, Apr 11 2022
from math import prod from sympy import primepi, integer_nthroot, integer_log, primerange def A051451(n): def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024
def A051451_list(n): a = [ ] L = [1] for i in (1..n): a.append(i) if (is_prime_power(i) == 1): L.append(lcm(a)) return(L) A051451_list(42) # Jani Melik, Jul 07 2022
Lcm(9) + 1 = lcm(10) + 1 = 2521, a prime.
Select[Table[LCM@@Range[n]+1,{n,150}],PrimeQ]//Union (* Harvey P. Dale, May 31 2017 *)
N=1; print1(2); for(n=1,1e3, if(isprimepower(n,&p), N*=p; if(isprime(N+1), print1(", "N+1)))) \\ Charles R Greathouse IV, Nov 18 2015
232792559 + 1 = LCM(1,...,m) for m = 19, 20, 21, 22.
Select[FoldList[LCM, Select[Range[100], PrimePowerQ]] - 1, PrimeQ] (* Amiram Eldar, Aug 18 2024 *)
L=1; for(n=2,1e3,if(isprimepower(n,&p) && ispseudoprime((L*=p)-1), print1(L-1", "))) \\ Charles R Greathouse IV, Apr 28 2014
isok(k) = ispseudoprime(lcm(vector(k, i, i))-1); \\ Jinyuan Wang, May 02 2020
print1(2);t=1;for(n=2,100,if(t%n, t=lcm(t,n); print1(", "t+1))) \\ Charles R Greathouse IV, Jan 04 2013
from math import prod from sympy import primepi, integer_nthroot, integer_log, primerange def A051452(n): def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return 1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024
1 + lcm(1..8) = 29^2, so its smallest prime divisor is 29; it occurs as the 7th term in the sequence because 8 is the 7th prime power: A000961(7) = 8.
a:=[]; lcm:=1; for k in [1..83] do if (k eq 1) or IsPrimePower(k) then lcm:=Lcm(lcm,k); a:=a cat [Factorization(1+lcm)[1][1]]; end if; end for; a; // Jon E. Schoenfield, May 28 2018
Join[{2},With[{ppwr=Select[Range[200],PrimePowerQ]},Table[FactorInteger[LCM@@Take[ ppwr,n]+ 1][[1,1]],{n,40}]]] (* Harvey P. Dale, May 28 2024 *)
a(n) = {my(nb = 1, lc = 1, k = 2); while (nb != n, if (isprimepower(k), nb++; lc = lcm(lc, k)); k++;); vecmin(factor(lc +1)[,1]);} \\ Michel Marcus, May 29 2018
from math import prod from sympy import primepi, integer_nthroot, integer_log, primerange, primefactors def A051454(n): def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return min(primefactors(1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)))) # Chai Wah Wu, Aug 15 2024
Select[Range[1000], PrimeQ[#] && PrimeQ[LCM@@Range[#]+1] &] (* Amiram Eldar, Nov 21 2018 *)
isok(p) = isprime(p) && (isprime(lcm(vector(p, i, i)) + 1)); \\ Michel Marcus, Oct 26 2013, Feb 25 2014
1 + lcm(1,2,..,89) = 718766754945489455304472257065075294401 is prime.
ispp(n) = isprimepower(n) || n==1; lista(nn) = {for (n=1, nn, if (ispp(n) && ispseudoprime(1+lcm([1..n])), print1(n, ", ")););} \\ Michel Marcus, Aug 26 2019
Comments