cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049537 Values of k for which A075059(k) = A003418(k) + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 19, 20, 21, 22, 25, 26, 31, 47, 48, 89, 90, 91, 92, 93, 94, 95, 96, 127, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 1369, 1370, 1371, 1372, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258, 2259, 2260, 2261, 2262, 2263, 2264, 2265, 2266, 3271, 3272, 3273, 3274, 3275, 3276, 3277, 3278, 3279, 3280, 3281, 3282, 3283, 3284, 3285, 3286, 3287
Offset: 1

Views

Author

Keywords

Examples

			8 is not in the sequence because A075059(8) = 1 + A003418(8) = 1 + lcm(1, 2, ..., 8) = 841 = 29^2 is not prime.
127 is in the sequence because A075059(127) = 1 + A003418(127) = 1 + lcm(1, 2, ..., 127) = 6676878045498705789701874602220118271269436344024536001 is prime.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range[250], PrimeQ[LCM@@Range[#]+1]&]] (* Harvey P. Dale, Nov 15 2011 *)
  • PARI
    isok(n) = isprime(lcm(vector(n, i, i))+1); \\ Michel Marcus, Feb 25 2014

Extensions

a(43)-a(57) from Ray Chandler, Jan 16 2009
a(1)=0 prepended and a(58)-a(86) added by Max Alekseyev, Sep 04 2015

A070198 Smallest nonnegative number m such that m == i (mod i+1) for all 1 <= i <= n.

Original entry on oeis.org

0, 1, 5, 11, 59, 59, 419, 839, 2519, 2519, 27719, 27719, 360359, 360359, 360359, 720719, 12252239, 12252239, 232792559, 232792559, 232792559, 232792559, 5354228879, 5354228879, 26771144399, 26771144399, 80313433199, 80313433199
Offset: 0

Views

Author

Benoit Cloitre, May 06 2002

Keywords

Comments

Also, smallest k such that, for 0 <= i < n, i+1 divides k-i.
Suggested by Chinese Remainder Theorem. This sequence can generate others: smallest b(n) such that b(n) == i (mod (i+2)), 1 <= i <= n, gives b(1)=1 and b(n) = a(n+1)-1 for n > 1; smallest c(n) such that c(n) == i (mod (i+3)), 1 <= i <= n, gives c(1)=1, c(2)=17 and c(n) = a(n+2) - 2 for n > 2; smallest d(n) such that c(n) == i (mod (i+4)), 1 <= i <= n, gives d(1)=1, d(2)=26, d(3)=206 and d(n) = a(n+3) - 3 for n > 3, etc.
A208768(n) occurs A057820(n) times. - Reinhard Zumkeller, Mar 01 2012
From Kival Ngaokrajang, Oct 10 2013: (Start)
A070198(n-1) is m such that max(Sum_{i=1..n} m (mod i)) = A000217(n-1).
Example for n = 3:
m\i = 1 2 3 sum
1 0 1 1 2
2 0 0 2 2
3 0 1 0 1
4 0 0 1 1
5 0 1 2 3 <--max remainder sum = 3 = A000217(2)
6 0 0 0 0 first occurs at m = 5 = A070198(2)
(End)

Examples

			a(3) = 11 because 11 == 1 (mod 2), 11 == 2 (mod 3) and 11 == 3 (mod 4).
		

Crossrefs

Cf. A057825 (indices of primes). - R. J. Mathar, Jan 14 2009
Cf. A116151. - Zak Seidov, Mar 11 2014

Programs

  • Haskell
    a070198 n = a070198_list !! n
    a070198_list = map (subtract 1) $ scanl lcm 1 [2..]
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [Exponent(SymmetricGroup(n))-1 : n in [1..30]]; /* Vincenzo Librandi, Oct 31 2014 - after Arkadiusz Wesolowski in A003418 */
    
  • Maple
    seq(ilcm($1..n) - 1, n=1..100); # Robert Israel, Nov 03 2014
  • Mathematica
    f[n_] := ChineseRemainder[ Range[0, n - 1], Range[n]]; Array[f, 28] (* or *)
    f[n_] := LCM @@ Range@ n - 1; Array[f, 28] (* Robert G. Wilson v, Oct 30 2014 *)
  • Python
    from math import lcm
    def A070198(n): return lcm(*range(1,n+2))-1 # Chai Wah Wu, May 02 2023

Formula

a(n) = lcm(1, 2, 3, ..., n+1) - 1 = A003418(n+1) - 1.

Extensions

Edited by N. J. A. Sloane, Nov 18 2007, at the suggestion of Max Alekseyev

A154524 Primes p such that lcm(1,2,3,...,p-2,p-1,p) - 1 is prime.

Original entry on oeis.org

3, 5, 7, 19, 23, 29, 47, 61, 97, 181, 233, 307, 401, 887, 1021, 1087, 1361, 1481, 2053, 2293, 5407, 5857, 11059, 14281, 27277, 27803, 36497, 44987, 53017
Offset: 1

Views

Author

Lekraj Beedassy, Jan 11 2009

Keywords

Comments

a(28) > 42000. - Daniel Suteu, Oct 06 2018
a(30) > 100000. - Michael S. Branicky, Jul 04 2025

Examples

			7 is in the sequence because it is prime and also lcm(1,2,3,4,5,6,7)-1 = 420-1 = 419 is prime. - _Emeric Deutsch_, Jan 16 2009
		

Crossrefs

Programs

  • Maple
    P := proc(n) options operator, arrow: ilcm(seq(j, j = 1 .. n)) end proc: a := proc(n) if isprime(n) and isprime(P(n)-1) then n else end if end proc: seq(a(n), n = 1 .. 3000); # Emeric Deutsch, Jan 16 2009

Formula

A057825 INTERSECT A000040. - R. J. Mathar, Jan 14 2009

Extensions

a(8)-a(17) from Ray Chandler, Jan 16 2009
a(18)-a(22) from Emeric Deutsch, Jan 16 2009
a(23)-a(27) from Daniel Suteu, Oct 06 2018
a(28)-a(29) from Michael S. Branicky, Jul 03 2025

A385564 Prime powers k such that lcm(1, 2, 3, ..., k)-1 is prime.

Original entry on oeis.org

3, 4, 5, 7, 8, 19, 23, 29, 32, 47, 61, 97, 181, 233, 307, 401, 887, 1021, 1087, 1361, 1481, 2053, 2293, 5407, 5857, 11059, 14281, 27277, 27803, 36497, 44987, 53017
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jul 03 2025

Keywords

Comments

The prime associated with each a(n) is A057824(n).
a(33) > 10^5. Up to 10^5, contains 4, 8, 32 not in subsequence A154524. - Michael S. Branicky, Jul 04 2025

Examples

			k=32 is a prime power, so point at which A003418 attains a new value, namely lcm(1, 2, 3, ..., 32) = 144403552893600, and by subtracting one we get 144403552893599 which is a prime number, so 32 is a member of the sequence.
		

Crossrefs

Intersection of A057825 and A000961.
Supersequence of A154524.

Programs

  • Mathematica
    Select[Range[6000],PrimePowerQ[#]&&PrimeQ[Fold[LCM,Range[#]]-1]&] (* James C. McMahon, Jul 09 2025 *)
  • PARI
    L=1;for(k=2,6000,!isprimepower(k,&p)&&next();L*=p;ispseudoprime(L-1)&&print1(k,", "))

Extensions

a(31)-a(32) from Michael S. Branicky, Jul 03 2025
Showing 1-4 of 4 results.