cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049536 Primes of the form lcm(1, ..., n) + 1 = A003418(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 2521, 232792561, 26771144401, 72201776446801, 442720643463713815201, 718766754945489455304472257065075294401, 6676878045498705789701874602220118271269436344024536001
Offset: 1

Views

Author

Keywords

Examples

			Lcm(9) + 1 = lcm(10) + 1 = 2521, a prime.
		

Crossrefs

Subsequence of A070858.

Programs

  • Mathematica
    Select[Table[LCM@@Range[n]+1,{n,150}],PrimeQ]//Union (* Harvey P. Dale, May 31 2017 *)
  • PARI
    N=1; print1(2); for(n=1,1e3, if(isprimepower(n,&p), N*=p; if(isprime(N+1), print1(", "N+1)))) \\ Charles R Greathouse IV, Nov 18 2015

A208768 The distinct values of A070198.

Original entry on oeis.org

0, 1, 5, 11, 59, 419, 839, 2519, 27719, 360359, 720719, 12252239, 232792559, 5354228879, 26771144399, 80313433199, 2329089562799, 72201776446799, 144403552893599, 5342931457063199, 219060189739591199, 9419588158802421599, 442720643463713815199
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 01 2012

Keywords

Comments

The terms of A070198, and duplicates removed.
a(n) = A051451(n) - 1 = A051452(n) - 2.
From Daniel Forgues, Apr 27 2014: (Start)
Factorizations:
5, 11, 59, 419, 839 are primes;
2519 = 11*229, 27719 = 53*523, 360359 = 173*2083,
720719 = 31*67*347, 12252239 = 29*647*653;
232792559, 5354228879 are primes;
26771144399 = 47*12907*44131, 80313433199 = 29*61*45400471;
2329089562799 is prime;
72201776446799 = 37*149*239*1091*50227;
144403552893599 is prime;
Very likely contains an infinite number of primes (see A057824). (End)
A more natural (compare with A051452) name for the sequence: lcm(1, ..., k) - 1, where k is the n-th prime power A000961(n). - Daniel Forgues, May 09 2014

Programs

  • Haskell
    import Data.List (nub)
    a208768 n = a208768_list !! (n-1)
    a208768_list = nub a070198_list
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A208768(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**integer_log(m, p)[0] for p in primerange(m+1))-1 # Chai Wah Wu, Aug 15 2024

A385564 Prime powers k such that lcm(1, 2, 3, ..., k)-1 is prime.

Original entry on oeis.org

3, 4, 5, 7, 8, 19, 23, 29, 32, 47, 61, 97, 181, 233, 307, 401, 887, 1021, 1087, 1361, 1481, 2053, 2293, 5407, 5857, 11059, 14281, 27277, 27803, 36497, 44987, 53017
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jul 03 2025

Keywords

Comments

The prime associated with each a(n) is A057824(n).
a(33) > 10^5. Up to 10^5, contains 4, 8, 32 not in subsequence A154524. - Michael S. Branicky, Jul 04 2025

Examples

			k=32 is a prime power, so point at which A003418 attains a new value, namely lcm(1, 2, 3, ..., 32) = 144403552893600, and by subtracting one we get 144403552893599 which is a prime number, so 32 is a member of the sequence.
		

Crossrefs

Intersection of A057825 and A000961.
Supersequence of A154524.

Programs

  • Mathematica
    Select[Range[6000],PrimePowerQ[#]&&PrimeQ[Fold[LCM,Range[#]]-1]&] (* James C. McMahon, Jul 09 2025 *)
  • PARI
    L=1;for(k=2,6000,!isprimepower(k,&p)&&next();L*=p;ispseudoprime(L-1)&&print1(k,", "))

Extensions

a(31)-a(32) from Michael S. Branicky, Jul 03 2025

A057822 Smaller of pair of twin primes whose average is lcm(1,...,m) for some m.

Original entry on oeis.org

5, 11, 59, 419, 232792559, 442720643463713815199
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

Known values of m such that lcm(1,...,m) is a twin prime mean value are as follows: {3, 4, 5, 6, 7, 19, 20, 21, 22, 47, 48}.
No more such primes occurs below m < 2000.
No more such primes occurs below m < 30000. - Amiram Eldar, Aug 18 2024

Examples

			419 and 421 are twin primes, (419 + 421)/2 = 420 = lcm(1,2,3,4,5,6,7).
		

Crossrefs

Intersection of A057824 and {A049536(n)-2}.

Programs

  • Mathematica
    Select[FoldList[LCM, Select[Range[50], PrimePowerQ]] - 1, And @@ PrimeQ[# + {0, 2}] &] (* Amiram Eldar, Aug 18 2024 *)
  • PARI
    lista(nn=50) = {for (i=1, nn, if (isprimepower(i), if (isprime(p=lcm([2..i])-1) && isprime(p+2), print1(p, ", "));););} \\ Michel Marcus, Aug 25 2019
Showing 1-4 of 4 results.