A049536
Primes of the form lcm(1, ..., n) + 1 = A003418(n) + 1.
Original entry on oeis.org
2, 3, 7, 13, 61, 421, 2521, 232792561, 26771144401, 72201776446801, 442720643463713815201, 718766754945489455304472257065075294401, 6676878045498705789701874602220118271269436344024536001
Offset: 1
Lcm(9) + 1 = lcm(10) + 1 = 2521, a prime.
-
Select[Table[LCM@@Range[n]+1,{n,150}],PrimeQ]//Union (* Harvey P. Dale, May 31 2017 *)
-
N=1; print1(2); for(n=1,1e3, if(isprimepower(n,&p), N*=p; if(isprime(N+1), print1(", "N+1)))) \\ Charles R Greathouse IV, Nov 18 2015
Original entry on oeis.org
0, 1, 5, 11, 59, 419, 839, 2519, 27719, 360359, 720719, 12252239, 232792559, 5354228879, 26771144399, 80313433199, 2329089562799, 72201776446799, 144403552893599, 5342931457063199, 219060189739591199, 9419588158802421599, 442720643463713815199
Offset: 1
-
import Data.List (nub)
a208768 n = a208768_list !! (n-1)
a208768_list = nub a070198_list
-
from math import prod
from sympy import primepi, integer_nthroot, integer_log, primerange
def A208768(n):
def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return prod(p**integer_log(m, p)[0] for p in primerange(m+1))-1 # Chai Wah Wu, Aug 15 2024
A385564
Prime powers k such that lcm(1, 2, 3, ..., k)-1 is prime.
Original entry on oeis.org
3, 4, 5, 7, 8, 19, 23, 29, 32, 47, 61, 97, 181, 233, 307, 401, 887, 1021, 1087, 1361, 1481, 2053, 2293, 5407, 5857, 11059, 14281, 27277, 27803, 36497, 44987, 53017
Offset: 1
k=32 is a prime power, so point at which A003418 attains a new value, namely lcm(1, 2, 3, ..., 32) = 144403552893600, and by subtracting one we get 144403552893599 which is a prime number, so 32 is a member of the sequence.
-
Select[Range[6000],PrimePowerQ[#]&&PrimeQ[Fold[LCM,Range[#]]-1]&] (* James C. McMahon, Jul 09 2025 *)
-
L=1;for(k=2,6000,!isprimepower(k,&p)&&next();L*=p;ispseudoprime(L-1)&&print1(k,", "))
A057822
Smaller of pair of twin primes whose average is lcm(1,...,m) for some m.
Original entry on oeis.org
5, 11, 59, 419, 232792559, 442720643463713815199
Offset: 1
419 and 421 are twin primes, (419 + 421)/2 = 420 = lcm(1,2,3,4,5,6,7).
-
Select[FoldList[LCM, Select[Range[50], PrimePowerQ]] - 1, And @@ PrimeQ[# + {0, 2}] &] (* Amiram Eldar, Aug 18 2024 *)
-
lista(nn=50) = {for (i=1, nn, if (isprimepower(i), if (isprime(p=lcm([2..i])-1) && isprime(p+2), print1(p, ", "));););} \\ Michel Marcus, Aug 25 2019
Showing 1-4 of 4 results.
Comments