cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051451 a(n) = lcm{ 1,2,...,x } where x is the n-th prime power (A000961).

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 840, 2520, 27720, 360360, 720720, 12252240, 232792560, 5354228880, 26771144400, 80313433200, 2329089562800, 72201776446800, 144403552893600, 5342931457063200, 219060189739591200, 9419588158802421600, 442720643463713815200
Offset: 1

Views

Author

Labos Elemer, Dec 11 1999

Keywords

Comments

This sequence is the list of distinct terms in A003418.
This may be the "smallest" product-based numbering system that has a unique finite representation for every rational number. In this base 1/2 = .1 (1*1/2), 1/3 = .02 (0*1/2 + 2*1/6), 1/5 = .0102 (0*1/2 + 1*1/6 + 0*1/12 + 2*1/60). - Russell Easterly, Oct 03 2001
Partial products of A025473, prime roots of the prime powers.
Conjecture: For every n > 2, there exists a twin prime pair [p, p+2] with p < a(n), such that [a(n)+p, a(n)+p+2] is also a twin prime pair. Example: For n=6 we can take p=11, because for a(6) = 420 is [420+11, 420+13] = [431, 433] also a twin prime pair. This has been verified for 2 < n <= 200. - Mike Winkler, Sep 12 2013, May 09 2014
The prime powers give all values, and do so uniquely. (Other positive integers give repeated values.) - Daniel Forgues, Apr 28 2014
"LCM numeral system": a(n+1) is place value for index n, n >= 0; a(-n+1) is (place value)^(-1) for index n, n < 0. - Daniel Forgues, May 03 2014
Repetitions removed from slowest growing integer series A003418 with integers > 0 converging to 0 in the ring Z^ of profinite integers. Both A003418 and the present sequence may be used as a replacement for the usual "factorial system" for coding profinite integers. - Herbert Eberle, May 01 2016
Every term of this sequence is deeply composite (A095848). Moreover, the terms of this sequence are the "special deeply composite numbers", in analogy to the special highly composite numbers (A106037). A special highly composite number is a highly composite number (A002182) that divides every larger highly composite number. In the same fashion, the deeply composite numbers that divide every larger deeply composite number are just the terms of this sequence. This follows from the formula for deeply composite numbers. - Hal M. Switkay, Jun 08 2021
From Bill McEachen, Apr 28 2023: (Start)
Every term belongs to A025487.
Conjecture: Every term = A001013(j)*A129912(k) for some j,k. (End)

Examples

			lcm[1,...,n] is 2520 for n=9 and 10. The smallest such n's are always prime powers, where A003418 jumps.
		

Crossrefs

Programs

  • Haskell
    a051451 n = a051451_list !! (n-1)
    a051451_list = scanl1 lcm a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Mathematica
    f[n_] := LCM @@ Range@ n; Union@ Array[f, 41] (* Robert G. Wilson v, Jul 11 2011 *)
    Join[{1},LCM@@Range[#]&/@Select[Range[50],PrimePowerQ]] (* Harvey P. Dale, Feb 06 2020 *)
  • PARI
    do(lim)=my(v=primes(primepi(lim)), u=List([1])); forprime(p=2, sqrtint(lim\1), for(e=2, log(lim+.5)\log(p), listput(u, p^e))); v=vecsort(concat(v, Vec(u))); for(i=2,#v,v[i]=lcm(v[i],v[i-1])); v \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {lim=100; n=1; i=1; j=1; until(n==lim, until(a!=j, a=lcm(j,i+1); i++;); j=a; n++; print(n" "a););} \\ Mike Winkler, Sep 07 2013
    
  • PARI
    x=1;for(i=1,100,if(omega(i)==1,x*=factor(i)[1,1])) \\ Florian Baur, Apr 11 2022
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A051451(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024
  • Sage
    def A051451_list(n):
        a = [ ]
        L = [1]
        for i in (1..n):
           a.append(i)
           if (is_prime_power(i) == 1):
               L.append(lcm(a))
        return(L)
    A051451_list(42) # Jani Melik, Jul 07 2022
    

Formula

a(n) = A003418(A000961(n)).
a(n) = A208768(n) + 1. - Reinhard Zumkeller, Mar 01 2012
Sum_{n>=1} 1/a(n) = A064890. - Amiram Eldar, Nov 16 2020

Extensions

Minor edits by Ray Chandler, Jan 16 2009

A070198 Smallest nonnegative number m such that m == i (mod i+1) for all 1 <= i <= n.

Original entry on oeis.org

0, 1, 5, 11, 59, 59, 419, 839, 2519, 2519, 27719, 27719, 360359, 360359, 360359, 720719, 12252239, 12252239, 232792559, 232792559, 232792559, 232792559, 5354228879, 5354228879, 26771144399, 26771144399, 80313433199, 80313433199
Offset: 0

Views

Author

Benoit Cloitre, May 06 2002

Keywords

Comments

Also, smallest k such that, for 0 <= i < n, i+1 divides k-i.
Suggested by Chinese Remainder Theorem. This sequence can generate others: smallest b(n) such that b(n) == i (mod (i+2)), 1 <= i <= n, gives b(1)=1 and b(n) = a(n+1)-1 for n > 1; smallest c(n) such that c(n) == i (mod (i+3)), 1 <= i <= n, gives c(1)=1, c(2)=17 and c(n) = a(n+2) - 2 for n > 2; smallest d(n) such that c(n) == i (mod (i+4)), 1 <= i <= n, gives d(1)=1, d(2)=26, d(3)=206 and d(n) = a(n+3) - 3 for n > 3, etc.
A208768(n) occurs A057820(n) times. - Reinhard Zumkeller, Mar 01 2012
From Kival Ngaokrajang, Oct 10 2013: (Start)
A070198(n-1) is m such that max(Sum_{i=1..n} m (mod i)) = A000217(n-1).
Example for n = 3:
m\i = 1 2 3 sum
1 0 1 1 2
2 0 0 2 2
3 0 1 0 1
4 0 0 1 1
5 0 1 2 3 <--max remainder sum = 3 = A000217(2)
6 0 0 0 0 first occurs at m = 5 = A070198(2)
(End)

Examples

			a(3) = 11 because 11 == 1 (mod 2), 11 == 2 (mod 3) and 11 == 3 (mod 4).
		

Crossrefs

Cf. A057825 (indices of primes). - R. J. Mathar, Jan 14 2009
Cf. A116151. - Zak Seidov, Mar 11 2014

Programs

  • Haskell
    a070198 n = a070198_list !! n
    a070198_list = map (subtract 1) $ scanl lcm 1 [2..]
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [Exponent(SymmetricGroup(n))-1 : n in [1..30]]; /* Vincenzo Librandi, Oct 31 2014 - after Arkadiusz Wesolowski in A003418 */
    
  • Maple
    seq(ilcm($1..n) - 1, n=1..100); # Robert Israel, Nov 03 2014
  • Mathematica
    f[n_] := ChineseRemainder[ Range[0, n - 1], Range[n]]; Array[f, 28] (* or *)
    f[n_] := LCM @@ Range@ n - 1; Array[f, 28] (* Robert G. Wilson v, Oct 30 2014 *)
  • Python
    from math import lcm
    def A070198(n): return lcm(*range(1,n+2))-1 # Chai Wah Wu, May 02 2023

Formula

a(n) = lcm(1, 2, 3, ..., n+1) - 1 = A003418(n+1) - 1.

Extensions

Edited by N. J. A. Sloane, Nov 18 2007, at the suggestion of Max Alekseyev

A051452 a(n) = 1 + lcm(1..k) where k is the n-th prime power A000961(n).

Original entry on oeis.org

2, 3, 7, 13, 61, 421, 841, 2521, 27721, 360361, 720721, 12252241, 232792561, 5354228881, 26771144401, 80313433201, 2329089562801, 72201776446801, 144403552893601, 5342931457063201, 219060189739591201
Offset: 1

Views

Author

Keywords

Comments

From Daniel Forgues, Apr 27 2014: (Start)
Factorizations:
2, 3, 7, 13, 61, 421 are primes;
841 = 29^2;
2521 is prime;
27721 = 19*1459, 360361 = 89*4049, 720721 = 71*10151,
12252241 = 1693*7237;
232792561 is prime;
5354228881 = 6659*804059;
26771144401 is prime;
80313433201 = 331*11239*21589, 2329089562801 = 101*271*2311*36821;
72201776446801 is prime.
Very likely contains an infinite number of primes (see A049536). (End)

Crossrefs

1 + A003418(A000961(n)), corresponds to distinct values of 1 + A003418.

Programs

  • PARI
    print1(2);t=1;for(n=2,100,if(t%n, t=lcm(t,n); print1(", "t+1))) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A051452(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return 1+prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024
Showing 1-3 of 3 results.