cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 64 results. Next

A058023 a(n) is the largest prime < A051451(n) - 1.

Original entry on oeis.org

3, 7, 53, 409, 829, 2503, 27701, 360337, 720703, 12252197, 232792501, 5354228843, 26771144371, 80313433159, 2329089562747, 72201776446757, 144403552893563, 5342931457063157, 219060189739591153, 9419588158802421517, 442720643463713815129
Offset: 3

Views

Author

Labos Elemer, Nov 15 2000

Keywords

Comments

This is a companion to A058019.

Examples

			A051451(6) = 420, 420 - 1 = 419 is preceded by the prime 409, so a(6) = 409.
		

Crossrefs

Programs

  • Mathematica
    NextPrime[Rest@ FoldList[LCM, Select[Range[50], PrimePowerQ]] - 1, -1] (* Amiram Eldar, Aug 27 2024 *)

Extensions

Edited by N. J. A. Sloane, Aug 20 2021

A077636 Length of periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.

Original entry on oeis.org

0, 1, 2, 2, 4, 2, 2, 2, 4, 8, 18, 14, 36, 38, 232, 268, 110, 280, 4348, 3244, 32684, 148184, 207616, 9988, 1946132, 2154482, 13319736, 8971624, 12345748, 69705504, 159413696, 1184191340, 1183672188, 23656693528, 28963250020, 701296434876, 754283490078
Offset: 1

Views

Author

Labos Elemer, Nov 13 2002

Keywords

Examples

			For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 8 terms, so a(10) = 8.
		

Crossrefs

Programs

  • Mathematica
    pp = Join[{1}, Select[Range[2, 50], Mod[ #, # - EulerPhi[ # ]] == 0 &]]; Table[ Length[ Last[ ContinuedFraction[ Sqrt[ Apply[ LCM, Table[i, {i, 1, pp[[n]]}]]]]]], {n, 1, 31}]

Formula

a(n) = A003285(A051451(n)). - Michel Marcus, Sep 30 2019

Extensions

Edited and extended by Robert G. Wilson v, Nov 14 2002
a(31) from Ray Chandler, Jan 16 2009
a(32)-a(35) from Chai Wah Wu, Sep 26 2019
a(36) from Chai Wah Wu, Sep 29 2019
a(37) from Chai Wah Wu, Sep 26 2021

A077637 Largest term in periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.

Original entry on oeis.org

0, 2, 4, 6, 14, 40, 56, 100, 332, 1200, 1696, 7000, 30514, 146344, 327236, 566792, 3052270, 16994324, 24033604, 146190716, 936077324, 6138269514, 42081855636, 111338124722, 810553782854, 6225981742592, 48626471887292, 68768216033362, 562892107725410, 4743013205833238
Offset: 1

Views

Author

Labos Elemer, Nov 13 2002

Keywords

Examples

			For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 1200 as largest term, so a(10) = 1200.
		

Crossrefs

Programs

  • Mathematica
    t={A051451(n)} Table[Max[Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]

Extensions

a(25)-a(28) from Ray Chandler, Jan 16 2009
a(1) corrected and a(29)-a(30) added by Chai Wah Wu, Sep 20 2021

A058019 a(n) is the smallest prime > A051451(n)+1.

Original entry on oeis.org

5, 11, 17, 67, 431, 853, 2531, 27733, 360391, 720743, 12252259, 232792597, 5354228921, 26771144429, 80313433231, 2329089562843, 72201776446853, 144403552893641, 5342931457063253, 219060189739591279
Offset: 2

Views

Author

Labos Elemer, Nov 14 2000

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrime[FoldList[LCM, Select[Range[50], PrimePowerQ]] + 1] (* Amiram Eldar, Aug 27 2024 *)

Extensions

Edited with better definition. - N. J. A. Sloane, Aug 20 2021

A064890 Decimal expansion of the sum of reciprocals of A051451, which includes 1 and values of lcm(1,...,x), where x is a prime power (A000961).

Original entry on oeis.org

1, 7, 7, 0, 6, 7, 5, 2, 4, 4, 3, 2, 5, 5, 8, 0, 2, 2, 7, 9, 1, 9, 7, 9, 6, 0, 0, 7, 6, 4, 2, 6, 6, 0, 8, 0, 2, 2, 3, 3, 1, 8, 3, 7, 6, 7, 2, 7, 2, 8, 3, 3, 5, 2, 0, 5, 2, 2, 4, 5, 8, 9, 6, 4, 4, 1, 2, 2, 2, 0, 3, 3, 8, 1, 0, 2, 2, 9, 6, 1, 1, 0, 5, 6, 5, 0, 7, 0, 5, 7, 7, 5, 7, 0, 8, 0, 9, 3, 4, 0, 3, 3, 3, 0, 2
Offset: 1

Views

Author

Labos Elemer, Oct 11 2001

Keywords

Examples

			c = 1.7706752443255802279197960076426608022331837672728335205224589644122203381...
c = 1 + (1/2) + (1/6) + (1/12) + (1/60) + (1/420) + ... = 743/420 + ... = 1.7690 + ... = 1.7706752... Compare with A064859, an analogous constant obtained from A003418, where the constant is larger than c: 1.7877805 > 1.7706752. Repeated occurrences of LCM values in A003418 is responsible for the 1.78778... - 1.77067... = 0.0171... excess.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range@ n; RealDigits[ Plus @@ (1/Union@ Array[f, 251]), 10, 111][[1]] (* Robert G. Wilson v, Jul 11 2011 *)

A077638 Sum of terms in periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.

Original entry on oeis.org

0, 2, 6, 8, 18, 42, 57, 105, 372, 1344, 1800, 7291, 32524, 150567, 342906, 738854, 3298239, 20772345, 36965663, 184510241, 1433356755, 7840220998, 56906577387, 113611483212, 843530932394, 6257315565011, 60692272232438, 70311381976766, 692150332693349, 4888462119949170
Offset: 1

Views

Author

Labos Elemer, Nov 13 2002

Keywords

Examples

			For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 1344 as sum of entries, so a(10) = 1344.
		

Crossrefs

Programs

  • Mathematica
    t={A051451(n)} Table[Max[Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]

Extensions

a(25)-a(28) from Ray Chandler, Jan 16 2009
a(1) corrected and a(29)-a(30) added by Chai Wah Wu, Sep 19 2021

A096795 Numerator of sum of reciprocals of first n prime powers; denominator=A051451(n).

Original entry on oeis.org

1, 3, 11, 25, 137, 1019, 2143, 6709, 76319, 1019867, 2084779, 36161963, 699329537, 16317371911, 82657705331, 250947687593, 7357796373397, 230420777138107, 465354165304139, 17362507669146743, 717205745892079663
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2004

Keywords

Examples

			n=6: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/7 =
(420+210+140+105+84+60)/420 = 1019/420 = a(6)/A051451(6).
		

Crossrefs

A137152 Triangle read by rows: prime powers whose row products give A051451.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 1, 3, 4, 5, 1, 1, 3, 4, 5, 7, 1, 1, 3, 1, 5, 7, 8, 1, 1, 1, 1, 5, 7, 8, 9, 1, 1, 1, 1, 5, 7, 8, 9, 11, 1, 1, 1, 1, 5, 7, 8, 9, 11, 13, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 17, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 17, 19, 1, 1, 1, 1, 5, 7, 1
Offset: 1

Views

Author

Mats Granvik, Jan 24 2008

Keywords

Comments

Similar to tables A133232 and A133233.

Examples

			The least common multiple of the first few rows are:
lcm{1} = 1
lcm{1,2} = 2
lcm{1,2,3} = 6
lcm{1,1,3,4} = 12
lcm{1,1,3,4,5} = 60
lcm{1,1,3,4,5,7} = 420
lcm{1,1,3,1,5,7,8} = 840
lcm{1,1,1,1,5,7,8,9} = 2520
lcm{1,1,1,1,5,7,8,9,11} = 27720
Multiplying the terms in the rows produces the same result:
1 = 1
1*2 = 2
1*2*3 = 6
1*1*3*4 = 12
1*1*3*4*5 = 60
1*1*3*4*5*7 = 420
1*1*3*1*5*7*8 = 840
1*1*1*1*5*7*8*9 = 2520
1*1*1*1*5*7*8*9*11 = 27720
		

Crossrefs

Cf. A051451.

A058022 Difference between lcm(1,..,n) and the largest prime before lcm(1,..,n) where n runs over the prime powers A000961, LCMs are in A051451.

Original entry on oeis.org

3, 4, 1, 1, 1, 1, 1, 17, 19, 23, 17, 43, 1, 1, 29, 41, 1, 43, 1, 43, 47, 83, 1, 83, 61, 149, 1, 97, 89, 109, 113, 103, 113, 89, 137, 1, 157, 181, 239, 139, 241, 139, 179, 233, 193, 163, 241, 173, 283, 167, 271, 193, 277, 181, 179, 199, 1, 193, 223, 239, 239, 233, 751
Offset: 1

Views

Author

Labos Elemer, Nov 15 2000

Keywords

Comments

Note that a(1) = 3 and a(2) = 4 use -2 as the preceding prime. - Robert Israel, Nov 18 2015

Examples

			6th and 7th different values of LCM-s are 840 and 2520. Deviation of immediate preceding primes(839,2503) are:1 and 17. For n=1 LCM[1]=1 and prime=-2 is the largest with deviation 3. So the sequence starts with 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local m;
        m:= ilcm($1..n);
        if m < 3 then m + 2
        else  m - prevprime(m)
        fi
    end proc:
    A000961:= select(t -> nops(numtheory:-factorset(t))<=1, [$1..1000]):
    map(f, A000961); # Robert Israel, Nov 18 2015
  • PARI
    N=2; print1("3, 4"); for(n=3,1e3, if(isprimepower(n,&p), N*=p; print1(", "N-precprime(N-1)))) \\ Charles R Greathouse IV, Nov 18 2015

A058024 a(n) = A051451(n) - A058023(n).

Original entry on oeis.org

3, 5, 7, 11, 11, 17, 19, 23, 17, 43, 59, 37, 29, 41, 53, 43, 37, 43, 47, 83, 71, 83, 61, 149, 73, 97, 89, 109, 113, 103, 113, 89, 137, 167, 157, 181, 239, 139, 241, 139, 179, 233, 193, 163, 241, 173, 283, 167, 271, 193, 277, 181, 179, 199, 269, 193, 223, 239
Offset: 3

Views

Author

Labos Elemer, Nov 15 2000

Keywords

Examples

			So far, all terms are primes. The analogy with fortunate numbers (A005235) is clear.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Aug 20 2021
Name corrected by Sean A. Irvine, Jul 18 2022
Showing 1-10 of 64 results. Next