A077637
Largest term in periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.
Original entry on oeis.org
0, 2, 4, 6, 14, 40, 56, 100, 332, 1200, 1696, 7000, 30514, 146344, 327236, 566792, 3052270, 16994324, 24033604, 146190716, 936077324, 6138269514, 42081855636, 111338124722, 810553782854, 6225981742592, 48626471887292, 68768216033362, 562892107725410, 4743013205833238
Offset: 1
For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 1200 as largest term, so a(10) = 1200.
-
t={A051451(n)} Table[Max[Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]
a(1) corrected and a(29)-a(30) added by
Chai Wah Wu, Sep 20 2021
A077638
Sum of terms in periodic part of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.
Original entry on oeis.org
0, 2, 6, 8, 18, 42, 57, 105, 372, 1344, 1800, 7291, 32524, 150567, 342906, 738854, 3298239, 20772345, 36965663, 184510241, 1433356755, 7840220998, 56906577387, 113611483212, 843530932394, 6257315565011, 60692272232438, 70311381976766, 692150332693349, 4888462119949170
Offset: 1
For A051451(10) = 360360, the periodic part is {3,2,1,132,1,2,3,1200} with 1344 as sum of entries, so a(10) = 1344.
-
t={A051451(n)} Table[Max[Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]
a(1) corrected and a(29)-a(30) added by
Chai Wah Wu, Sep 19 2021
A077639
LCM of terms in period of continued fraction expansion of square root of A051451(n), i.e., sqrt(lcm(1..x)) where x is a prime power from A000961.
Original entry on oeis.org
1, 2, 4, 6, 14, 40, 56, 100, 2988, 13200, 805600, 1323000, 1744790520, 112326337200, 10154793943770044128560, 26773964343922343708160, 185027354760601080, 1418008957437634586640
Offset: 1
For A051451(10) = 360360, the periodic part is P = {3,2,1,132,1,2,3,1200} with lcm(P)=13200 as LCM of terms, so a(10) = 13200.
-
Table[Apply[LCM, Last[ContinuedFraction[Sqrt[Part[t, u]]]]], {u, 1, 24}]
Showing 1-3 of 3 results.