cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A000793 Landau's function g(n): largest order of permutation of n elements. Equivalently, largest LCM of partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, 105, 140, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 1540, 2310, 2520, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 27720, 30030, 32760, 60060, 60060, 60060, 60060, 120120
Offset: 0

Views

Author

Keywords

Comments

Also the largest orbit size (cycle length) for the permutation A057511 acting on Catalan objects (e.g., planar rooted trees, parenthesizations). - Antti Karttunen, Sep 07 2000
Grantham mentions that he computed a(n) for n <= 500000.
An easy lower bound is a(n) >= A002110(max{ m | A007504(m) <= n}), with strict inequality if n is not in A007504 (sum of the first m primes). Indeed, if A007504(m) <= n, the partition of n into the first m primes and maybe one additional term will have an LCM greater than or equal to primorial(m). If n > A007504(m) then a(n) >= (3/2)*A002110(m) by replacing the initial 2 by 3. But even for n = A007504(m), one has a(n) > A002110(m) for m > 8, since replacing 2+23 in 2+3+5+7+11+13+17+19+23 by 16+9, one has an LCM of 8*3*primorial(8) > primorial(9) because 24 > 23. - M. F. Hasler, Mar 29 2015
Maximum degree of the splitting field of a polynomial of degree n over a finite field, since over a finite field the degree of the splitting field is the least common multiple of the degrees of the irreducible polynomial factors of the polynomial. - Charles R Greathouse IV, Apr 27 2015
Maximum order of the elements in the symmetric group S_n. - Jianing Song, Dec 12 2021

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 6*x^6 + 12*x^7 + 15*x^8 + ...
From _Joerg Arndt_, Feb 15 2013: (Start)
The 15 partitions of 7 are the following:
[ #]  [ partition ]   lcm( parts )
[ 1]  [ 1 1 1 1 1 1 1 ]   1
[ 2]  [ 1 1 1 1 1 2 ]   2
[ 3]  [ 1 1 1 1 3 ]   3
[ 4]  [ 1 1 1 2 2 ]   2
[ 5]  [ 1 1 1 4 ]   4
[ 6]  [ 1 1 2 3 ]   6
[ 7]  [ 1 1 5 ]   5
[ 8]  [ 1 2 2 2 ]   2
[ 9]  [ 1 2 4 ]   4
[10]  [ 1 3 3 ]   3
[11]  [ 1 6 ]   6
[12]  [ 2 2 3 ]   6
[13]  [ 2 5 ]  10
[14]  [ 3 4 ]  12  (max)
[15]  [ 7 ]   7
The maximum (LCM) value attained is 12, so a(7) = 12.
(End)
		

References

  • J. Haack, "The Mathematics of Steve Reich's Clapping Music," in Bridges: Mathematical Connections in Art, Music and Science: Conference Proceedings, 1998, Reza Sarhangi (ed.), 87-92.
  • Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 223.
  • J.-L. Nicolas, On Landau's function g(n), pp. 228-240 of R. L. Graham et al., eds., Mathematics of Paul Erdős I.
  • S. M. Shah, An inequality for the arithmetical function g(x), J. Indian Math. Soc., 3 (1939), 316-318. [See below for a scan of the first page.]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000793 = maximum . map (foldl lcm 1) . partitions where
       partitions n = ps 1 n where
          ps x 0 = [[]]
          ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Mar 29 2015
    
  • Maple
    A000793 := proc(n)
        l := 1:
        p := combinat[partition](n):
        for i from 1 to combinat[numbpart](n) do
            if ilcm( p[i][j] $ j=1..nops(p[i])) > l then
                l := ilcm( p[i][j] $ j=1..nops(p[i]))
            end if:
        end do:
        l ;
    end proc:
    seq(A000793(n),n=0..30) ; # James Sellers, Dec 07 2000
    seq( max( op( map( x->ilcm(op(x)), combinat[partition](n)))), n=0..30); # David Radcliffe, Feb 28 2006
    # third Maple program:
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, max(b(n, i-1),
               seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    a:=n->b(n, `if`(n<8, 3, numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    f[n_] := Max@ Apply[LCM, IntegerPartitions@ n, 1]; Array[f, 47] (* Robert G. Wilson v, Oct 23 2011 *)
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; a[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 07 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = my(m, t, j, u); if( n<2, n>=0, m = ceil(n / exp(1)); t = ceil( (n/m)^m ); j=1; for( i=2, t, u = factor(i); u = sum( k=1, matsize(u)[1], u[k,1]^u[k,2]); if( u<=n, j=i)); j)}; /* Michael Somos, Oct 20 2004 */
    
  • PARI
    c=0;A793=apply(t->eval(concat(Vec(t)[#Str(c++) .. -1])),select(t->#t,readstr("/tmp/b000793.txt")));A000793(n)=A793[n+1] \\ Assumes the b-file in the /tmp (or C:\tmp) folder. - M. F. Hasler, Mar 29 2015
    
  • PARI
    A008475(n)=my(f=factor(n)); sum(i=1,#f~,f[i,1]^f[i,2]);
    a(n)=
    {
      if(n<2, return(1));
      forstep(i=ceil(exp(1.05315*sqrt(log(n)*n))), 2, -1,
        if(A008475(i)<=n, return(i))
      );
      1;
    } \\ Charles R Greathouse IV, Apr 28 2015
    
  • PARI
    { \\ translated from code given by Tomas Rokicki
      my( N = 100 );
      my( V = vector(N,j,1) );
       forprime (i=2, N,  \\ primes i
          forstep (j=N, i,  -1,
             my( hi = V[j] );
             my( pp = i );  \\ powers of prime i
             while ( pp<=j,  \\ V[] is 1-based
                 hi = max(if(j==pp, pp, V[j-pp]*pp), hi);
                 pp *= i;
             );
             V[j] = hi;
          );
       );
       print( V );  \\ all values
    \\   print( V[N] );  \\ just a(N)
    \\  print("0 1");  for (n=1, N, print(n, " ", V[n]) );  \\ b-file
    } \\ Joerg Arndt, Nov 14 2016
    
  • PARI
    {a(n) = my(m=1); if( n<0, 0, forpart(v=n, m = max(m, lcm(Vec(v)))); m)}; /* Michael Somos, Sep 04 2017 */
    
  • Python
    from sympy import primerange
    def aupton(N): # compute terms a(0)..a(N)
        V = [1 for j in range(N+1)]
        for i in primerange(2, N+1):
            for j in range(N, i-1, -1):
                hi = V[j]
                pp = i
                while pp <= j:
                    hi = max((pp if j==pp else V[j-pp]*pp), hi)
                    pp *= i
                V[j] = hi
        return V
    print(aupton(47)) # Michael S. Branicky, Oct 09 2022 after Joerg Arndt
    
  • Python
    from sympy import primerange,sqrt,log,Rational
    def f(N): # compute terms a(0)..a(N)
        V = [1 for j in range(N+1)]
        if N < 4:
            C = 2
        else:
            C = Rational(166,125)
        for i in primerange(C*sqrt(N*log(N))):
            for j in range(N, i-1, -1):
                hi = V[j]
                pp = i
                while pp <= j:
                    hi = max(V[j-pp]*pp, hi)
                    pp *= i
                V[j] = hi
        return V
    # Philip Turecek, Mar 31 2023
    
  • Sage
    def a(n):
      return max([lcm(l) for l in Partitions(n)])
    # Philip Turecek, Mar 28 2023
  • Scheme
    ;; A naive algorithm searching through all partitions of n:
    (define (A000793 n) (let ((maxlcm (list 0))) (fold_over_partitions_of n 1 lcm (lambda (p) (set-car! maxlcm (max (car maxlcm) p)))) (car maxlcm)))
    (define (fold_over_partitions_of m initval addpartfun colfun) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))
    ;; From Antti Karttunen, May 17 2013.
    

Formula

Landau: lim_{n->oo} (log a(n)) / sqrt(n log n) = 1.
For bounds, see the Shah and Massias references.
For n >= 2, a(n) = max_{k} A008475(k) <= n. - Joerg Arndt, Nov 13 2016

Extensions

More terms from David W. Wilson
Removed erroneous comment about a(16) which probably originated from misreading a(15)=105 as a(16) because of offset=0: a(16) = 4*5*7 = 140 is correct as it stands. - M. F. Hasler, Feb 02 2009

A225636 a(n) = A225627(n)/A000793(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 5, 7, 8, 9, 7, 14, 11, 13, 15, 44, 39, 26, 26, 22, 33, 33, 39, 39, 143, 143, 143, 153, 78, 187, 221, 221, 209, 209, 247, 247, 323, 323, 418, 418, 391, 646, 437, 437, 646, 969, 969, 969, 969, 782, 874, 874, 1292, 667, 713, 713, 782, 5681, 3496
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

a(n) divides A225558(n) for all n.

Crossrefs

Programs

A225652 a(n) = (1/n) * lcm(n,p1,p2,...,pk) for that partition of n which maximizes this value among all partitions [p1,p2,...,pk] of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 5, 12, 15, 20, 21, 30, 35, 60, 45, 56, 105, 210, 77, 420, 99, 220, 315, 840, 385, 924, 1155, 1540, 585, 2520, 364, 4620, 3465, 3640, 4620, 3432, 5005, 13860, 8190, 6160, 9009, 30030, 4290, 60060, 9945, 12376, 45045, 120120, 17017, 51480, 36036
Offset: 1

Views

Author

Antti Karttunen, May 15 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {1},
          `if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)),
           b(n-i*j, i-1))[], j=0..n/i)}))
        end:
    a:= n-> max(seq(ilcm(n, i), i=b(n$2)))/n:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 25 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Table[Map[Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := Max[Table[LCM[n, i], {i, b[n, n]}]]/n; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 50}] (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)
  • Scheme
    (define (A225652 n) (/ (A225646 n) (max 1 n)))

Formula

a(n) = A225646(n)/n.

A225637 a(n) = A003418(n)/A225629(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 2, 5, 7, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

For n >= 2, a(n) is the final factor by which the A225629(n) needs to be multiplied that it finally reaches the fixed point A003418(n) of the column n of A225630.
The first composite, 4, occurs at n=20. The first composite which is not power of prime, namely 6, occurs at n=61.
For all n >= 3, a(n) divides A225558(n).

Crossrefs

Programs

Showing 1-5 of 5 results.