cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A112810 Records in A110566 (lcm{1,2,...,n}/denominator of harmonic number H(n)).

Original entry on oeis.org

1, 3, 15, 45, 77, 275, 931, 1725, 1935, 5805, 29025, 41175, 166803, 1039533, 1162047, 91801713, 419498967, 2183383175, 19691916585, 216611082435, 2382721906785, 113804487945521, 22211221792244703, 422013214052649357, 425137351586922079, 936039253001457601
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, b]], {n, 10^6}]; t
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(new, ", "); rec = new););} \\ Michel Marcus, Mar 07 2018

Formula

a(n) = A110566(A112809(n)).

Extensions

a(25)-a(26) from Max Alekseyev, Nov 29 2013

A112811 Terms of A110566 grouped.

Original entry on oeis.org

1, 3, 1, 3, 15, 45, 15, 3, 1, 11, 77, 7, 1, 3, 9, 27, 9, 3, 33, 11, 1, 25, 5, 55, 275, 25, 1, 13, 39, 3, 9, 27, 9, 3, 1, 17, 1, 49, 7, 49, 931, 19, 1, 11, 319, 11, 319, 11, 1, 3, 75, 1725, 345, 15, 645, 1935, 5805, 29025, 675, 41175, 13725, 549, 20313, 6771, 183, 3, 411, 15207
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2005

Keywords

Comments

A110566: LCM{1,2,...,n}/denominator of harmonic number H(n).
The factor of change from a(n) to a(n+1) is: 3,3,3,5,3,3,5,3,11,7,11,7,3,3,3,3,3,11,3,11,25,5,11,5,11,25,13,3,13,3,3,3,3,..., . see A110268.

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Flatten[Union /@ Split[Table[f[n], {n, 703}]]]

A110268 Consider the sequence A110566: lcm{1,2,...,n}/denominator of harmonic number H(n). a(n) is the factor that is changed going from A110566(n) to A110566(n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 11, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 11, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

a(n) is always an odd prime power, A061345.

Examples

			A110566(4) through A110566(10) are {1,1,3,3,3,1,1}, therefore the factors are 1,3,1,1,3,1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ LCM[f[n], f[n + 1]]/GCD[f[n], f[n + 1]], {n, 104}]
  • PARI
    f(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k));
    a(n) = my(x = f(n+1)/f(n)); if (x > 1, x, 1/x); \\ Michel Marcus, Mar 07 2018

A112809 Positions of records in A110566.

Original entry on oeis.org

1, 6, 20, 21, 42, 120, 342, 506, 567, 594, 600, 610, 2184, 4896, 6108, 6162, 6498, 12760, 14067, 14157, 14201, 93942, 123462, 123519, 734413, 2451397, 4591010, 11571129, 13346540, 13619348, 13619790, 46180567
Offset: 1

Views

Author

Robert G. Wilson v, Sep 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    c = 0; a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b > c, c = b; AppendTo[t, n]], {n, 10^6}]; t
  • PARI
    lista(nn) = {rec = 0; for (n=1, nn, new = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); if (new > rec, print1(n, ", "); rec = new););} \\ Michel Marcus, Mar 07 2018

Extensions

a(27)-a(28) from Amiram Eldar, Dec 18 2018
a(29)-a(31) from Chai Wah Wu, Mar 08 2021
a(32) from Chai Wah Wu, Mar 14 2021

A112812 a(n) is length of n-th run in A110566.

Original entry on oeis.org

5, 3, 9, 2, 1, 3, 1, 2, 6, 9, 2, 5, 5, 9, 3, 3, 3, 5, 4, 7, 12, 5, 5, 10, 1, 4, 31, 6, 7, 20, 9, 9, 9, 27, 29, 17, 5, 7, 35, 6, 1, 18, 2, 14, 29, 29, 29, 20, 2, 14, 6, 19, 4, 30, 8, 27, 6, 2, 8, 11, 4, 4, 19, 18, 5, 14, 18, 26, 11, 72, 10, 19, 6, 11, 22, 11, 33, 6, 5, 22, 4, 7, 99, 97, 2, 44, 9
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Length /@ Split[Table[f[n], {n, 1220}]]

Extensions

Edited by Don Reble, Nov 08 2005
Definition clarified by Omar E. Pol, Dec 26 2008

A338120 a(n) is the least index k such that the n-th odd squarefree number A056911(n) divides A110566(k).

Original entry on oeis.org

1, 6, 20, 42, 33, 156, 20, 272, 342, 2058, 506, 377, 930, 77, 14406, 629, 162, 1640, 559, 2162, 4624, 1166, 110, 6498, 3422, 610, 342732, 4422, 506, 4970, 5256, 42, 6162, 6806
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2021

Keywords

Comments

According to a theorem proven by Shiu (2016), a(n) exists for all n.

Examples

			   n  A056911(n)  a(n) = k          A110566(k)
  --  ----------  --------  --------------------------
   1       1            1            1 =  1 * 1
   2       3            6            3 =  3 * 1
   3       5           20           15 =  5 * 3
   4       7           42           77 =  7 * 11
   5      11           33           11 = 11 * 1
   6      13          156           13 = 13 * 1
   7      15           20           15 = 15 * 1
   8      17          272           17 = 17 * 1
   9      19          342          931 = 19 * 49
  10      21         2058         1911 = 21 * 91
  11      23          506         1725 = 23 * 75
  12      29          377          319 = 29 * 11
  13      31          930         3751 = 31 * 121
  14      33           77           33 = 33 * 1
  15      35        14406   2430488445 = 35 * 69442527
  16      37          629        20313 = 37 * 549
  17      39          162           39 = 39 * 1
  18      41         1640         6519 = 41 * 159
  19      43          559          645 = 43 * 15
  20      47         2162        12831 = 47 * 273
  21      51         4624         9537 = 51 * 187
  22      53         1166           53 = 53 * 1
  23      55          110           55 = 55 * 1
  24      57         6498    419498967 = 57 * 7359631
  25      59         3422         6431 = 59 * 109
  26      61          610        41175 = 61 * 675
  27      65       342732       974285 = 65 * 14989
  28      67         4422         2211 = 67 * 33
  29      69          506         1725 = 69 * 25
  30      71         4970         2343 = 71 * 33
  31      73         5256         7227 = 73 * 99
  32      77           42           77 = 77 * 1
  33      79         6162     91801713 = 79 * 1162047
  34      83         6806      1200097 = 83 * 14459
		

Crossrefs

Programs

  • Mathematica
    max = 64; osf = Select[Range[1, 64, 2], SquareFreeQ]; m = Length[osf]; c = 0; s = Table[0, {m}]; h = 0; lcm = 1; n = 1; While[c < m, h += 1/n; lcm = LCM[lcm, n];  r = lcm/Denominator[h]; Do[If[s[[k]] == 0 && Divisible[r, osf[[k]]], c++; s[[k]] = n], {k, 1, m}]; n++]; s

A025529 a(n) = (1/1 + 1/2 + ... + 1/n)*lcm{1,2,...,n}.

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 1089, 2283, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 825887397, 837527025, 848612385, 859193865, 19994251455, 20217344325, 102157567401, 103187226801, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Keywords

Comments

First column of A027446. - Eric Desbiaux, Mar 29 2013
From Amiram Eldar and Thomas Ordowski, Aug 07 2019: (Start)
By Wolstenholme's theorem, if p > 3 is a prime, then p^2 | a(p-1).
Conjecture: for n > 3, if n^2 | a(n-1), then n is a prime.
Note that if n = p^2 with prime p > 3, then n | a(n-1).
It seems that composite numbers n such that n | a(n-1) are only the squares n = p^2 of primes p > 3.
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164.
The n-th triangular number n(n+1)/2 | a(n) for n = 1, 2, 6, 4422, ... (End)

Crossrefs

Differs from A096617 at 7th term.

Programs

  • GAP
    List([1..30],n->Sum([1..n],k->1/k)*Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
    
  • Magma
    [HarmonicNumber(n)*Lcm([1..n]):n in [1..30]]; // Marius A. Burtea, Aug 07 2019
  • Maple
    a:= n-> add(1/k, k=1..n)*ilcm($1..n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 14 2013
  • Mathematica
    Table[HarmonicNumber[n]*LCM @@ Range[n], {n, 27}] (* Arkadiusz Wesolowski, Mar 29 2012 *)
  • PARI
    a(n) = sum(k=1, n, 1/k)*lcm([1..n]); \\ Michel Marcus, Apr 02 2018
    

Formula

a(n) = A001008(n)*A110566(n). - Arkadiusz Wesolowski, Mar 29 2012
a(n) = Sum_{k=1..n} lcm(1,2,...,n)/k. - Thomas Ordowski, Aug 07 2019

A098464 Numbers k such that lcm(1,2,3,...,k) equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 27, 28, 29, 30, 31, 32, 49, 50, 51, 52, 53, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

T. D. Noe, Sep 09 2004

Keywords

Comments

Numbers k such that A110566(k) = 1.
Shiu (2016) conjectured that this sequence is infinite. - Amiram Eldar, Feb 02 2021

Crossrefs

Cf. A002805 (denominator of H(n)), A003418 (lcm(1, 2, ..., n)), A110566.

Programs

  • Mathematica
    Select[Range[250], LCM@@Range[ # ]==Denominator[HarmonicNumber[ # ]]&]
  • PARI
    isok(n) = lcm(vector(n, i, i)) == denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
    
  • Python
    from fractions import Fraction
    from sympy import lcm
    k, l, h, A098464_list = 1, 1, Fraction(1, 1), []
    while k < 10**6:
        if l == h.denominator:
            A098464_list.append(k)
        k += 1
        l = lcm(l,k)
        h += Fraction(1,k) # Chai Wah Wu, Mar 07 2021

A112822 Least number k such that lcm{1,2,...,k}/denominator of harmonic number H(k) = 2n-1.

Original entry on oeis.org

1, 6, 105, 44, 63, 33, 156, 20, 272, 343, 38272753, 11881, 100, 66, 822, 28861, 77
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2005

Keywords

Comments

First occurrence of 2n-1 in A110566.
Sequence continues: a(18)=?, 1332, 162, 2758521, 24649, 21, a(24)=?, 294, a(26)=?, 1166, 110, 126059, 201957, 3660, 37553041, 344929, 296341, a(35)=?, 25155299, a(37)=?, 500, 42

Crossrefs

Programs

  • Mathematica
    a = h = 1; t = Table[0, {100}]; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b < 101 && t[[(b + 1)/2]] == 0, t[[(b + 1)/2]] = n], {n, 500000}]; t
  • Python
    from fractions import Fraction
    from sympy import lcm
    def A112822(n):
        k, l, h = 1, 1, Fraction(1,1)
        while l != h.denominator*(2*n-1):
            k += 1
            l = lcm(l,k)
            h += Fraction(1,k)
        return k # Chai Wah Wu, Mar 06 2021

Extensions

a(11), a(32) from Max Alekseyev, Nov 29 2013
a(33)-a(34) from Chai Wah Wu, Mar 06 2021
a(36), a(38), a(39) from Chai Wah Wu, Mar 12 2021

A112813 Numbers k such that lcm(1,2,3,...,k)/3 equals the denominator of the k-th harmonic number H(k).

Original entry on oeis.org

6, 7, 8, 18, 19, 25, 26, 54, 55, 56, 57, 58, 59, 60, 61, 62, 72, 73, 74, 75, 76, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2005

Keywords

Comments

When 3 occurs in A110566.

Crossrefs

Programs

  • Mathematica
    f[n_] := LCM @@ Range[n]/Denominator[ HarmonicNumber[n]]; Select[ Range[231], f[ # ] == 3 &]
  • PARI
    isok(n) = lcm(vector(n, i, i)) == 3*denominator(sum(i=1, n, 1/i)); \\ Michel Marcus, Mar 07 2018
Showing 1-10 of 23 results. Next