A112822 Least number k such that lcm{1,2,...,k}/denominator of harmonic number H(k) = 2n-1.
1, 6, 105, 44, 63, 33, 156, 20, 272, 343, 38272753, 11881, 100, 66, 822, 28861, 77
Offset: 1
Crossrefs
Programs
-
Mathematica
a = h = 1; t = Table[0, {100}]; Do[a = LCM[a, n]; h = h + 1/n; b = a/Denominator[h]; If[b < 101 && t[[(b + 1)/2]] == 0, t[[(b + 1)/2]] = n], {n, 500000}]; t
-
Python
from fractions import Fraction from sympy import lcm def A112822(n): k, l, h = 1, 1, Fraction(1,1) while l != h.denominator*(2*n-1): k += 1 l = lcm(l,k) h += Fraction(1,k) return k # Chai Wah Wu, Mar 06 2021
Extensions
a(11), a(32) from Max Alekseyev, Nov 29 2013
a(33)-a(34) from Chai Wah Wu, Mar 06 2021
a(36), a(38), a(39) from Chai Wah Wu, Mar 12 2021
Comments