cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A000254 Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.

Original entry on oeis.org

0, 1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880, 19802759040, 283465647360, 4339163001600, 70734282393600, 1223405590579200, 22376988058521600, 431565146817638400, 8752948036761600000, 186244810780170240000
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of n+1 elements with exactly two cycles.
Number of cycles in all permutations of [n]. Example: a(3) = 11 because the permutations (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) have 11 cycles altogether. - Emeric Deutsch, Aug 12 2004
Row sums of A094310: In the symmetric group S_n, each permutation factors into k independent cycles; a(n) = sum k over S_n. - Harley Flanders (harley(AT)umich.edu), Jun 28 2004
The sum of the top levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, the levels of their last columns being 2 and 1, respectively. - Emeric Deutsch, Aug 12 2006
a(n) is divisible by n for all composite n >= 6. a(2*n) is divisible by 2*n + 1. - Leroy Quet, May 20 2007
For n >= 2 the determinant of the n-1 X n-1 matrix M(i,j) = i + 2 for i = j and 1 otherwise (i,j = 1..n-1). E.g., for n = 3 the determinant of [(3, 1), (1, 4)]. See 53rd Putnam Examination, 1992, Problem B5. - Franz Vrabec, Jan 13 2008, Mar 26 2008
The numerator of the fraction when we sum (without simplification) the terms in the harmonic sequence. (1 + 1/2 = 2/2 + 1/2 = 3/2; 3/2 + 1/3 = 9/6 + 2/6 = 11/6; 11/6 + 1/4 = 44/24 + 6/24 = 50/24;...). The denominator of this fraction is n!*A000142. - Eric Desbiaux, Jan 07 2009
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=1) ~ exp(-x)/x^2*(1 - 3/x + 11/x^2 - 50/x^3 + 274/x^4 - 1764/x^5 + 13068/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the number of permutations of [n+1] containing exactly 2 cycles. Example: a(2) = 3 because the permutations (1)(23), (12)(3), (13)(2) are the only permutations of [3] with exactly 2 cycles. - Tom Woodward (twoodward(AT)macalester.edu), Nov 12 2009
It appears that, with the exception of n= 4, a(n) mod n = 0 if n is composite and = n-1 if n is prime. - Gary Detlefs, Sep 11 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012
Numerator of harmonic number H(n) = Sum_{i=1..n} 1/i when not reduced. See A001008 (Wolstenholme numbers) for the reduced numerators. - Rahul Jha, Feb 18 2015
The Stirling transform of this sequence is A222058(n) (Harmonic-geometric numbers). - Anton Zakharov, Aug 07 2016
a(n) is the (n-1)-st elementary symmetric function of the first n numbers. - Anton Zakharov, Nov 02 2016
The n-th iterated integral of log(x) is x^n * (n! * log(x) - a(n))/(n!)^2 + a polynomial of degree n-1 with arbitrary coefficients. This can be proven using the recurrence relation a(n) = (n-1)! + n*a(n-1). - Mohsen Maesumi, Oct 31 2018
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164. - Amiram Eldar and Thomas Ordowski, Aug 08 2019
Total number of left-to-right maxima (or minima) in all permutations of [n]. a(3) = 11 = 3+2+2+2+1+1: (1)(2)(3), (1)(3)2, (2)1(3), (2)(3)1, (3)12, (3)21. - Alois P. Heinz, Aug 01 2020

Examples

			(1-x)^-1 * (-log(1-x)) = x + 3/2*x^2 + 11/6*x^3 + 25/12*x^4 + ...
G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identities 186-190.
  • N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover Publications, 1986, see page 2. MR0863284 (89d:41049)
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation).
  • K. Javorszky, Natural Orders: De Ordinibus Naturalibus, 2016, ISBN 978-3-99057-139-2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    a:=[]; for n in [1..22] do a:=a cat [Abs(StirlingFirst(n,2))]; end for; a; // Marius A. Burtea, Jan 01 2020
  • Maple
    A000254 := proc(n) option remember; if n<=1 then n else n*A000254(n-1)+(n-1)!; fi; end: seq(A000254(n),n=0..21);
    a := n -> add(n!/k, k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    Table[ (PolyGamma[ m ]+EulerGamma) (m-1)!, {m, 1, 24} ] (* Wouter Meeussen *)
    Table[ n!*HarmonicNumber[n], {n, 0, 19}] (* Robert G. Wilson v, May 21 2005 *)
    Table[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}],{n,1,30}] (* Alexander Adamchuk, Jul 11 2006 *)
    Abs[StirlingS1[Range[20],2]] (* Harvey P. Dale, Aug 16 2011 *)
    Table[Gamma'[n + 1] /. EulerGamma -> 0, {n, 0, 30}] (* Li Han, Feb 14 2024*)
  • Maxima
    a(n):=(-1)^(n+1)/2*(n+1)*sum(k*bern(k-1)*stirling1(n,k),k,1,n); /* Vladimir Kruchinin, Nov 20 2016 */
    
  • MuPAD
    A000254 := proc(n) begin n*A000254(n-1)+fact(n-1) end_proc: A000254(1) := 1:
    
  • PARI
    {a(n) = if( n<0, 0, (n+1)! / 2 * sum( k=1, n, 1 / k / (n+1-k)))} /* Michael Somos, Feb 05 2004 */
    
  • Sage
    [stirling_number1(i, 2) for i in range(1, 22)]  # Zerinvary Lajos, Jun 27 2008
    

Formula

Let P(n,X) = (X+1)*(X+2)*(X+3)*...*(X+n); then a(n) is the coefficient of X; or a(n) = P'(n,0). - Benoit Cloitre, May 09 2002
Sum_{k > 0} a(k) * x^k/ k!^2 = exp(x) *(Sum_{k>0} (-1)^(k+1) * x^k / (k * k!)). - Michael Somos, Mar 24 2004; corrected by Warren D. Smith, Feb 12 2006
a(n) is the coefficient of x^(n+2) in (-log(1-x))^2, multiplied by (n+2)!/2.
a(n) = n! * Sum_{i=1..n} 1/i = n! * H(n), where H(n) = A001008(n)/A002805(n) is the n-th harmonic number.
a(n) ~ 2^(1/2)*Pi^(1/2)*log(n)*n^(1/2)*e^-n*n^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: log(1 - x) / (x-1). (= (log(1 - x))^2 / 2 if offset 1). - Michael Somos, Feb 05 2004
D-finite with recurrence: a(n) = a(n-1) * (2*n - 1) - a(n-2) * (n - 1)^2, if n > 1. - Michael Somos, Mar 24 2004
a(n) = A081358(n)+A092691(n). - Emeric Deutsch, Aug 12 2004
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n, k)/k. - Vladeta Jovovic, Jan 29 2005
p^2 divides a(p-1) for prime p > 3. a(n) = (Sum_{i=1..n} 1/i) / Product_{i=1..n} 1/i. - Alexander Adamchuk, Jul 11 2006
a(n) = 3* A001710(n) + 2* A001711(n-3) for n > 2; e.g., 11 = 3*3 + 2*1, 50 = 3*12 + 2*7, 274 = 3*60 + 2*47, ... - Gary Detlefs, May 24 2010
a(n) = A138772(n+1) - A159324(n). - Gary Detlefs, Jul 05 2010
a(n) = A121633(n) + A002672(n). - Gary Detlefs, Jul 18 2010
a(n+1) = Sum_{i=1..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - Shanzhen Gao, Sep 14 2010
From Gary Detlefs, Sep 11 2010: (Start)
a(n) = (a(n-1)*(n^2 - 2*n + 1) + (n + 1)!)/(n - 1) for n > 2.
It appears that, with the exception of n = 2, (a(n+1)^2 - a(n)^2) mod n^2 = 0 if n is composite and 4*n if n is prime.
It appears that, with the exception of n = 2, (a(n+1)^3 - a(n)^2) mod n = 0 if n is composite and n - 2 if n is prime.
It appears that, with the exception of n = 2, (a(n)^2 + a(n+1)^2) mod n = 0 if n is composite and = 2 if n is prime. (End)
a(n) = Integral_{x=0..oo} (x^n - n!)*log(x)*exp(-x) dx. - Groux Roland, Mar 28 2011
a(n) = 3*n!/2 + 2*(n-2)!*Sum_{k=0..n-3} binomial(k+2,2)/(n-2-k) for n >= 2. - Gary Detlefs, Sep 02 2011
a(n)/(n-1)! = ml(n) = n*ml(n-1)/(n-1) + 1 for n > 1, where ml(n) is the average number of random draws from an n-set with replacement until the total set has been observed. G.f. of ml: x*(1 - log(1 - x))/(1 - x)^2. - Paul Weisenhorn, Nov 18 2011
a(n) = det(|S(i+2, j+1)|, 1 <= i,j <= n-2), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
E.g.f.: x/(1 - x)*E(0)/2, where E(k) = 2 + E(k+1)*x*(k + 1)/(k + 2). - Sergei N. Gladkovskii, Jun 01 2013 [Edited by Michael Somos, Nov 28 2013]
0 = a(n) * (a(n+4) - 6*a(n+3) + 7*a(n+2) - a(n+1)) - a(n+1) * (4*a(n+3) - 6*a(n+2) + a(n+1)) + 3*a(n+2)^2 unless n=0. - Michael Somos, Nov 28 2013
For a simple way to calculate the sequence, multiply n! by the integral from 0 to 1 of (1 - x^n)/(1 - x) dx. - Rahul Jha, Feb 18 2015
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Inverse binomial transform of A073596.
a(n) ~ sqrt(2*Pi*n) * n^n * (log(n) + gamma)/exp(n), where gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = ((-1)^(n+1)/2*(n+1))*Sum_{k=1..n} k*Bernoulli(k-1)*Stirling1(n,k). - Vladimir Kruchinin, Nov 20 2016
a(n) = (n)! * (digamma(n+1) + gamma), where gamma is the Euler-Mascheroni constant A001620. - Pedro Caceres, Mar 10 2018
From Andy Nicol, Oct 21 2021: (Start)
Gamma'(x) = a(x-1) - (x-1)!*gamma, where Gamma'(x) is the derivative of the gamma function at positive integers and gamma is the Euler-Mascheroni constant. E.g.:
Gamma'(1) = -gamma, Gamma'(2) = 1-gamma, Gamma'(3) = 3-2*gamma,
Gamma'(22) = 186244810780170240000 - 51090942171709440000*gamma. (End)
From Peter Bala, Feb 03 2022: (Start)
The following are all conjectural:
E.g.f.: for nonzero m, (1/m)*Sum_{n >= 1} (-1)^(n+1)*(1/n)*binomial(m*n,n)* x^n/(1 - x)^(m*n+1) = x + 3*x^2/2! + 11*x^3/3! + 50*x^4/4! + ....
For nonzero m, a(n) = (1/m)*n!*Sum_{k = 1..n} (-1)^(k+1)*(1/k)*binomial(m*k,k)* binomial(n+(m-1)*k,n-k).
a(n)^2 = (1/2)*n!^2*Sum_{k = 1..n} (-1)^(k+1)*(1/k^2)*binomial(n,k)* binomial(n+k,k). (End)
From Mélika Tebni, Jun 20 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A021009(n, k+1).
a(n) = Sum_{k=0..n} k!*A094587(n, k+1). (End)
a(n) = n! * 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n - 1)^2/((2*n - 1)))))). - Peter Bala, Mar 16 2024

A002944 a(n) = LCM(1,2,...,n) / n.

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 60, 105, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 12252240, 11639628, 11085360, 10581480, 232792560, 223092870, 1070845776, 1029659400, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1

Views

Author

Keywords

Comments

Equals LCM of all numbers of (n-1)-st row of Pascal's triangle [Montgomery-Breusch]. - J. Lowell, Apr 16 2014. Corrected by N. J. A. Sloane, Sep 04 2019
Williams proves that a(n+1) = A034386(n) for n=2, 11 and 23 only. This is trivially the case for n=0 and 1, too. - Michel Marcus, Apr 16 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A025527 and A025537.
Cf. A056606 (squarefree kernel).

Programs

  • Haskell
    a002944 n = a003418 n `div` n  -- Reinhard Zumkeller, Mar 16 2015
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n)); f:=n->A003418(n)/n;
    BB:=n->sum(1/sqrt(k), k=1..n): a:=n->floor(denom(BB(n))/n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 29 2007
  • Mathematica
    Table[Apply[LCM,Range[n]]/n,{n,1,30}]  (* Geoffrey Critzer, Feb 10 2013 *)
  • PARI
    a(n) = lcm(vector(n, i, i))/n; \\ Michel Marcus, Apr 16 2014
    

Formula

a(n) = A003418(n) / n.
a(n) = LCM of C(n-1, 0), C(n-1, 1), ..., C(n-1, n-1). [Montgomery-Breusch] [Corrected by N. J. A. Sloane, Jun 11 2008]
Equally, a(n+1) = LCM_{k=0..n} binomial(n,k). - Franklin T. Adams-Watters, Jul 05 2009

Extensions

More terms from Jud McCranie, Jan 17 2000
Edited by N. J. A. Sloane, Jun 11 2008 and Sep 04 2019

A000774 a(n) = n!*(1 + Sum_{i=1..n} 1/i).

Original entry on oeis.org

1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456, 14257440, 160460640, 1965444480, 26029779840, 370643938560, 5646837369600, 91657072281600, 1579093018675200, 28779361764249600, 553210247226470400, 11185850044938240000, 237335752951879680000
Offset: 0

Views

Author

Keywords

Comments

Number of {12,12*,21}-avoiding signed permutations in the hyperoctahedral group.
Let M be the n X n matrix with M( i, i ) = i+1, other entries = 1. Then a(n) = det(M); example: a(3) = 17 = det([2, 1, 1; 1, 3, 1; 1, 1, 4]). - Philippe Deléham, Jun 13 2005.
With offset 1: number of permutations of the n-set into at most two cycles. - Joerg Arndt, Jun 22 2009
A ball goes with probability 1/(k+1) from place k to a place j with j=0..k; a(n)/n! is the average number of steps from place n to place 0. - Paul Weisenhorn, Jun 03 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012

Examples

			(1-x)^-1 * (1 - log(1-x)) = 1 + 2*x + 5/2*x^2 + 17/6*x^3 + ...
G.f.: 1+x = 1/(1+x) + 2*x/((1+x)*(1+2*x)) + 5*x^2/((1+x)*(1+2*x)*(1+3*x)) + 17*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 74*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
		

Crossrefs

Cf. A000254, A000776. Same as A081046 apart from signs.

Programs

  • Maple
    A000774 := proc(n) local i,j; j := 0; for i to n do j := j+1/i od; (j+1)*n! end;
    ZL :=[S, {S = Set(Cycle(Z),3 > card)}, labelled]: seq(combstruct[count](ZL, size=n), n=1..20); # Zerinvary Lajos, Mar 25 2008
    a[0]:=1: p:=1: for n from 1 to 20 do
    a[n]:=n*a[n-1]+p: p:=p*n: end do: # Paul Weisenhorn, Jun 03 2010
  • Mathematica
    Table[n!(1+Sum[1/i,{i,n}]),{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    a(n)=n!*(1+sum(j=1,n, 1/j ));
    
  • PARI
    {a(n)=if(n==0, 1, polcoeff(1+x-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j*x+x*O(x^n)) )), n))} /* Paul D. Hanna, Mar 01 2012 */

Formula

E.g.f.: A(x) = (1-x)^-1 * (1 - log(1-x)).
a(n+1) = (n+1)*a(n) + n!. - Jon Perry, Sep 26 2004
a(n) = A000254(n) + n!. - Mark van Hoeij, Jul 06 2010
G.f.: 1+x = Sum_{n>=0} a(n) * x^n / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Mar 01 2012
a(n) = Sum_{k=0..n} (k+1)*|s(n,k)|, where s(n,k) are Stirling numbers of the first kind (A008275). - Peter Luschny, Oct 16 2012
Conjecture: a(n) +(-2*n+1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 26 2012

A048671 a(n) is the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 16, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 75, 76, 77, 78, 1
Offset: 1

Views

Author

Keywords

Comments

A proper divisor d of n is a divisor of n such that 1 <= d < n.
Previous name was: a(n) = q(n)/q(n-1), where q(n) = n!/A003418(n).

Examples

			8!/lcm(8) = 48 = 40320/840 while 7!/lcm(7) = 5040/420 = 12 so a(8) = 48/12 = 4.
a(5) = 1 = lcm(1,2,3,4,5)/lcm(1,5,10,10,5,1).
		

Crossrefs

Cf. A182936 gives the dual (greatest common divisor).

Programs

Formula

a(n) = A025527(n)/A025527(n-1).
a(n) = (n*A003418(n-1))/A003418(n).
a(n) = A003418(n-1)/A002944(n). [corrected by Michel Marcus, May 18 2020]
From Henry Bottomley, May 19 2000: (Start)
a(n) = n/A014963(n) = lcm(A052126(n), A032742(n)).
a(n) = n if n not a prime power, a(n) = n/p if n = p^m (i.e., a(n) = 1 if n = p). (End)
From Vladeta Jovovic, Jul 04 2002: (Start)
a(n) = n*Product_{d | n} d^mu(d).
Product_{d | n} a(d) = A007956(n). (End)
a(n) = Product_{k=1..n-1} if(gcd(n, k) > 1, 1 - exp(2*pi*i*k/n), 1), where i = sqrt(-1). - Paul Barry, Apr 15 2005
From Peter Luschny, Jun 09 2011: (Start)
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*Pi/Gamma(k/n)^2, 1).
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*sin(Pi*k/n), 1). (End)

Extensions

New definition based on a comment of David Wasserman by Peter Luschny, Mar 23 2011

A205959 a(n) = n^omega(n)/rad(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 24, 1, 14, 15, 8, 1, 54, 1, 40, 21, 22, 1, 96, 5, 26, 9, 56, 1, 900, 1, 16, 33, 34, 35, 216, 1, 38, 39, 160, 1, 1764, 1, 88, 135, 46, 1, 384, 7, 250, 51, 104, 1, 486, 55, 224, 57, 58, 1, 7200, 1, 62, 189, 32, 65, 4356, 1, 136
Offset: 1

Views

Author

Peter Luschny, Feb 03 2012

Keywords

Comments

a(n) = exp(-Sum_{d in P} moebius(d)*log(n/d)) where P = {d : d divides n and d is prime}. This is a variant of the (exponential of the) von Mangoldt function where the divisors are restricted to prime divisors. The (exponential of the) summatory function is A205957. Apart from n=1 the value is 1 if and only if n is prime; the fixed points are the products of two distinct primes (A006881).

Crossrefs

Programs

  • Haskell
    a205959 n = product $ map (div n) $ a027748_row n
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    with(numtheory): A205959 := proc(n) select(isprime, divisors(n));
    simplify(exp(-add(mobius(d)*log(n/d), d=%))) end:
    # Alternative:
    a := n -> local p; mul(n/p[1], p in ifactors(n)[2]):
    seq(a(n), n = 1..68); # Peter Luschny, Jul 19 2023
  • Mathematica
    a[n_] := Exp[-Sum[ MoebiusMu[d]*Log[n/d], {d, FactorInteger[n][[All, 1]]}]]; Table[a[n], {n, 1, 68}] (* Jean-François Alcover, Jan 15 2013 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);prod(i=1,#f,n/f[i]) \\ Charles R Greathouse IV, Jun 27 2013
    
  • Python
    from math import prod
    from sympy import primefactors
    def A205959(n): return prod(n//p for p in primefactors(n)) # Chai Wah Wu, Jul 12 2023
  • Sage
    def A205959(n) :
        P = filter(is_prime, divisors(n))
        return simplify(exp(-add(moebius(d)*log(n/d) for d in P)))
    [A205959(n) for n in (1..60)]
    

Formula

a(n) = Product_{p|n} n/p. - Charles R Greathouse IV, Jun 27 2013
a(n) = Product_{k=1..A001221(n)} n/A027748(n,k). - Reinhard Zumkeller, Dec 15 2013
If n is squarefree, then a(n) = n^(omega(n)-1). - Wesley Ivan Hurt, Jun 09 2020
a(p^e) = p^(e-1) for p prime, e > 0. - Bernard Schott, Jun 09 2020

Extensions

New name from Charles R Greathouse IV, Jun 30 2013

A225558 a(n) = A003418(n)/A000793(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 10, 35, 56, 126, 84, 924, 462, 6006, 4290, 3432, 5148, 58344, 58344, 554268, 554268, 554268, 554268, 6374082, 6374082, 21246940, 21246940, 52151580, 34767720, 924241890, 504131940, 15628090140, 26447537160, 26447537160, 15628090140
Offset: 0

Views

Author

Antti Karttunen, May 10 2013

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= `if`(n=0, 1, ilcm(n, g(n-1))) end:
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0 or i<1, 1, max(b(n, i-1),
               seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))))
        end:
    a:= n->g(n)/b(n, `if`(n<8, 3,
        numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))):
    seq(a(n), n=0..40); # Alois P. Heinz, May 22 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n==0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n] // Floor }]]]]; a[0]=1; a[n_] := LCM @@ Range[n] / b[n, If[n<8, 3, PrimePi[ Ceiling[ 1.328*Sqrt[n*Log[n] // Floor]]]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2016, after Alois P. Heinz *)

Formula

a(n) = A003418(n)/A000793(n).
A074115(n)/a(n) = A025527(n).

A334958 GCD of consecutive terms of the factorial times the alternating harmonic series.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 18144000, 145152000, 145152000, 2612736000, 2612736000, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000, 135579678474240000, 26573616980951040000, 26573616980951040000
Offset: 1

Views

Author

Petros Hadjicostas, May 17 2020

Keywords

Comments

For n = 1..14, we have a(n) = A025527(n), but a(15) = 18144000 <> 3628800 = A025527(15).
It appears that A025527(n) | a(n) for all n >= 1 and A025527(n) = a(n) for infinitely many n. In addition, it seems that a(n)/a(n-1) = A048671(n) for infinitely many n >= 2. However, I have not established these claims.
This sequence appears in formulas for sequences A075827, A075828, A075829, and A075830 (the first one of which was established in 2002 by Michael Somos).
Conjecture: a(n) = n! * Product_{p <= n} p^min(0, v_p(H'(n))), where the product ranges over primes p, H'(n) = Sum_{k=1..n} (-1)^(k+1)/k, and v_p(r) is the p-adic valuation of rational r (checked for n < 1100).

Examples

			A024167(4) = 4!*(1 - 1/2 + 1/3 - 1/4) = 14, A024167(5) = 5!*(1 - 1/2 + 1/3 - 1/4 + 1/5) = 94, A024168(4) = 4!*(1/2 - 1/3 + 1/4) = 10, and A024168(5) = 5!*(1/2 - 1/3 + 1/4 - 1/5) = 26. Then a(4) = gcd(14, 94) = gcd(10, 26) = gcd(14, 4!) = gcd(10, 4!) = gcd(14, 10) = 2.
		

Crossrefs

Cf. A056612 (similar sequence for the harmonic series).

Programs

  • Maple
    b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
    a:= n-> (f-> igcd(b(n)*f, f))(n!):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 18 2020
  • Mathematica
    b[n_] := b[n] = -(-1)^n/n + If[n == 1, 0, b[n-1]];
    a[n_] := GCD[b[n] #, #]&[n!];
    Array[a, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)
  • SageMath
    def A():
        a, b, n = 1, 1, 2
        while True:
            yield gcd(a, b)
            b, a = a, a + b * n * n
            n += 1
    a = A(); print([next(a) for  in range(29)]) # _Peter Luschny, May 19 2020

Formula

a(n) = gcd(A024167(n+1), A024167(n)) = gcd(A024168(n+1), A024168(n)) = gcd(A024167(n), n!) = gcd(A024168(n), n!) = gcd(A024167(n), A024168(n)).

A027451 First diagonal of A027447.

Original entry on oeis.org

1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, 6350400, 5336100, 768398400, 662547600, 577152576, 2029052025, 519437318400, 463325262400, 150117385017600, 135480939978384, 122885206329600, 111967718990400, 54192375991353600, 49770428644836900
Offset: 1

Views

Author

Keywords

Comments

Equals the denominators of MN(z;n)/(n!)^2 for n =>1, see A162990. - Johannes W. Meijer, Jul 21 2009
It appears that a(n) = denominator of n^2*sum(1/k^2,k=1..n). - Gary Detlefs, May 29 2010

Crossrefs

From Johannes W. Meijer, Jul 21 2009: (Start)
Equals A002944(n)^2.
Equals A001044(n-1)/A025527(n)^2.
(End)

Programs

Formula

Numerators of sequence a[ n, n ] in (a[ i, j ])^3 where a[ i, j ] = 1/i if j<=i, 0 if j>i.
a(n) = (lcm($1..n)/n)^2. - Johannes W. Meijer, Jul 21 2009

Extensions

More terms from Sean A. Irvine, Nov 04 2019
Showing 1-10 of 20 results. Next