A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A120078
Coefficient triangle of numerator polynomials appearing in certain column o.g.f.s related to the H-atom spectrum.
Original entry on oeis.org
1, 4, -3, 36, -27, -5, 144, -108, -20, -7, 3600, -2700, -500, -175, -81, 3600, -2700, -500, -175, -81, -44, 176400, -132300, -24500, -8575, -3969, -2156, -1300, 705600, -529200, -98000, -34300, -15876, -8624, -5200, -3375, 6350400, -4762800, -882000, -308700, -142884, -77616, -46800, -30375, -20825
Offset: 1
For n=2 the o.g.f. of A120072(m,2)/A120073(m,2) (=[5/36, 3/16, 21/100, 2/9, ...]) is G(x,2) = -dilog(1-x) + x*P(2,x)/(1*4*(1-x)) = -dilog(1-x) + x*(4-3*x)/(4*(1-x)).
Triangle begins:
1;
4, -3;
36, -27, -5;
144, -108, -20, -7;
3600, -2700, -500, -175, -81;
3600, -2700, -500, -175, -81, -44;
176400, -132300, -24500, -8575, -3969, -2156, -1300;
Signed row sums conjectured to coincide with
A027451.
-
f:= func< n | n eq 1 select 1 else 1/n^2 -1/(n-1)^2 >;
A120078:= func< n,k | (Lcm([1..n]))^2*f(k) >;
[A120078(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 26 2023
-
Table[(Apply[LCM, Range[n]])^2*If[k==1, 1, (1-2*k)/(k*(k-1))^2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 26 2023 *)
-
def f(k): return 1 if (k==1) else 1/k^2 - 1/(k-1)^2
def A120078(n,k): return (lcm(range(1, n+1)))^2*f(k)
flatten([[A120078(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 26 2023
A120079
Unsigned row sums of triangle A120078.
Original entry on oeis.org
1, 7, 68, 279, 7056, 7100, 349200, 1400175, 12622400, 12637296, 1530446400, 1531460700, 258950260800, 259056111600, 259141506624, 1036845584775, 299715332716800, 299771444772800, 108234634597689600, 108249271042728816, 108261866776377600, 108272784263716800
Offset: 1
Signed row sums conjectured to be
A027451(n), which also appears in the denominator of o.g.f.s. G(x, n) given in
A120078 as numbers A(n).
-
[(2-1/n^2)*(Lcm([1..n]))^2: n in [1..40]]; // G. C. Greubel, Apr 26 2023
-
Table[(2-1/n^2)*(Apply[LCM, Range[n]])^2, {n, 40}] (* G. C. Greubel, Apr 26 2023 *)
-
def A120079(n): return (2 - 1/n^2)*(lcm(range(1, n+1)))^2
[A120079(n) for n in range(1,41)] # G. C. Greubel, Apr 26 2023
A119936
Least common multiple (LCM) of denominators of the rows of the triangle of rationals A119935/A119932.
Original entry on oeis.org
1, 8, 108, 576, 18000, 21600, 1234800, 5644800, 57153600, 63504000, 8452382400, 9220780800, 1688171284800, 1818030614400, 1947889944000, 8310997094400, 2551995545299200, 2702112930316800, 1029655143835718400
Offset: 1
Showing 1-4 of 4 results.
Comments