cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A205957 a(n) = exp(-Sum_{k=1..n} Sum_{d|k, d prime} moebius(d)*log(k/d)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 34560, 34560, 483840, 7257600, 58060800, 58060800, 3135283200, 3135283200, 125411328000, 2633637888000, 57940033536000, 57940033536000, 5562243219456000, 27811216097280000, 723091618529280000, 6507824566763520000
Offset: 0

Views

Author

Peter Luschny, Sep 01 2012

Keywords

Comments

The author proposes to denote this sequence lcm_{p}(n) as lcm(n) = lcm({1,2,..n}) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)).
For n > 0 the a(n) are the partial products of A205959(n), which is the exponential of a modified von Mangoldt function where the divisors are restricted to prime divisors.

Crossrefs

Programs

  • Maple
    with(numtheory):
    A205957 := proc(n) simplify(exp(-add(add(mobius(d)*log(k/d), d=select(isprime, divisors(k))),k=1..n))) end: seq(A205957(i), i=0..27);
  • Mathematica
    a[n_] := Exp[-Sum[ MoebiusMu[p] Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 27 2013 *)
  • PARI
    a(n)=prod(k=4,n,my(f=factor(k)[, 1]); prod(i=1, #f, k/f[i])) \\ Charles R Greathouse IV, Jun 27 2013
  • Sage
    def A205957(n) : return simplify(exp(-add(add(moebius(p)*log(k/p) for p in prime_divisors(k)) for k in (1..n))))
    

Formula

a(n) = Product_{p prime, p<=n} (floor(n/p)!). - Ridouane Oudra, Nov 22 2021

A363923 a(n) = n^npf(n) / rad(n), where npf(n) is the number of prime factors with multiplicity of n.

Original entry on oeis.org

1, 1, 1, 8, 1, 6, 1, 256, 27, 10, 1, 288, 1, 14, 15, 32768, 1, 972, 1, 800, 21, 22, 1, 55296, 125, 26, 6561, 1568, 1, 900, 1, 16777216, 33, 34, 35, 279936, 1, 38, 39, 256000, 1, 1764, 1, 3872, 6075, 46, 1, 42467328, 343, 12500, 51, 5408, 1, 1417176, 55, 702464
Offset: 1

Views

Author

Peter Luschny, Jul 11 2023

Keywords

Crossrefs

Programs

  • Maple
    with(NumberTheory): a := n -> n^NumberOfPrimeFactors(n) / Radical(n):
    seq(a(n), n = 1..56);
  • Mathematica
    Array[#^PrimeOmega[#]/(Times @@ FactorInteger[#][[All, 1]]) &, 56] (* Michael De Vlieger, Jul 11 2023 *)
  • PARI
    a(n) = my(f=factor(n)); n^bigomega(f)/factorback(f[, 1]); \\ Michel Marcus, Jul 11 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A363923(n): return prod(n**e//p for p, e in factorint(n).items()) # Chai Wah Wu, Jul 12 2023

Formula

a(n) = n^A001222(n) / A007947(n).
a(n) = 1 <=> n term of A008578.

A216153 The partial products of a(n) are the distinct values of the exponential of the von Mangoldt function modified by restricting the divisors to prime divisors (A205957).

Original entry on oeis.org

1, 2, 6, 4, 3, 10, 24, 14, 15, 8, 54, 40, 21, 22, 96, 5, 26, 9, 56, 900, 16, 33, 34, 35, 216, 38, 39, 160, 1764, 88, 135, 46, 384, 7, 250, 51, 104, 486, 55, 224, 57, 58, 7200, 62, 189, 32, 65, 4356, 136, 69, 4900, 864, 74, 375, 152, 77, 6084, 640, 27, 82
Offset: 1

Views

Author

Peter Luschny, Sep 02 2012

Keywords

Comments

The partial products of a(n) are A216152(n) which are the distinct values of the 'prime lcm(n)' A205957.
Let b(n) denote the nonprime numbers A018252(n).
If n = 1 then a(n) = b(n) = 1
else if a(n) < b(n) then
a(n) is a cototient of consecutive pure powers of primes (A053211),
b(n) is a prime power with exponent > 1 (A025475),
b(n)/a(n) is a prime root of n-th nontrivial prime power (A025476);
else if a(n) > b(n) then
b(n) is a number which is neither a prime power nor a semiprime (A102467);
else if a(n) = b(n) then
a(n) is the product of two distinct primes (A006881).

Crossrefs

Programs

  • Mathematica
    A205957[n_] := Exp[-Sum[ MoebiusMu[p]*Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; nonPrime[1] = 1; nonPrime[n_] := Which[k0 = k /. FindRoot[ n + PrimePi[k] == k , {k, n}] // Floor; n+PrimePi[k0] == k0, k0 , n+PrimePi[k0+1] == k0+1, k0+1, n+PrimePi[k0+2] == k0+2, k0+2, True, k0]; a[1] = 1; a[n_] := A205957[nonPrime[n]] / A205957[nonPrime[n-1]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jun 27 2013 *)
  • Sage
    def A216153(n):
        if n == 1 : return 1
        return A205957(A018252(n))/A205957(A018252(n-1))

Formula

a(n) = A205957(A018252(n))/A205957(A018252(n-1)) for n > 1, a(1) = 1.

A363919 a(n) = n^excess(n), where excess(n) = A046660(n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 64, 9, 1, 1, 12, 1, 1, 1, 4096, 1, 18, 1, 20, 1, 1, 1, 576, 25, 1, 729, 28, 1, 1, 1, 1048576, 1, 1, 1, 1296, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 49, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 60, 1, 1, 63, 1073741824, 1, 1, 1, 68
Offset: 1

Views

Author

Keywords

Examples

			108 = 2^2 * 3^3 => excess(108) = 5 - 2 => a(108) = 108^3 = 1259712.
		

Crossrefs

Programs

  • Julia
    using Nemo
    exc(n::fmpz) = sum(e - 1 for (p, e) in factor(n))
    A363919(n::fmpz) = n < 2 ? fmpz(1) : n^exc(n)
    println([A363919(fmpz(n)) for n in 1:68])
    
  • Maple
    with(NumberTheory):
    A363919 := n -> n^(NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct')):
    # Alternative:
    a := n -> local i: n^add(i[2] - 1, i in ifactors(n)[2]): seq(a(n), n = 1..68);
  • Mathematica
    Array[#^(PrimeOmega[#] - PrimeNu[#]) &, 120]
  • PARI
    a(n) = my(f=factor(n)[, 2]); n^(vecsum(f)-#f); \\ Michel Marcus, Jul 16 2023
    
  • Python
    from sympy import factorint
    def A363919(n): return n**sum(map(lambda e:e-1,factorint(n).values())) # Chai Wah Wu, Jul 18 2023
  • SageMath
    def A363919(n):
        if n < 2: return 1
        return n^sum(p[1] - 1 for p in list(factor(n)))
    print([A363919(n) for n in srange(1, 69)])
    

Formula

a(n) = n^(Sum_{p in Factors(n)} (mult(p) - 1)), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
a(n) = A363923(n) / A205959(n).
a(n) = n^A046660(n) = n^(A001222(n) - A001221(n)).
a(n) = 1 or divisible by at least one squared prime.
a(n) = 1 <=> n is squarefree (A005117).
a(n) != 1 <=> A056170(n) != 0.
a(n) = n <=> n = A060687(n - 1) for n >= 2.
a(2^n) = 2^(n*(n - 1)) = A053763(n).
a(n) <= 2^(lb(n)*(lb(n)-1)), where lb(n) = floor(log_{2}(n)).
a(n) is even <=> n = 2*A337945(n).
a(n) > 1 is odd <=> n = A053850(n).
n is prime => a(n) = 1. ('prime' means term of A000040).
n is prime product => a(n) = 1. ('prime product' means term of A144338).
n is proper prime power => a(n) is proper prime power. ('proper prime power' means term of A246547).
Moebius(a(n)) = [a(n) = 1], where [ ] denotes the Iverson bracket.

A205958 a(0) = 1 and a(n) = A180000(n)*a(floor(n/2))^2 for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 48, 16, 40, 40, 270, 270, 945, 63, 129024, 129024, 64512, 64512, 2016000, 96000, 528000, 528000, 144342000, 28868400, 187644600, 20849400, 1787836050, 1787836050, 59594535, 59594535, 3999321544458240, 121191561953280, 1030128276602880
Offset: 0

Views

Author

Peter Luschny, Feb 04 2012

Keywords

Comments

lcm(1,2,..,n) = (n!*a(n)) / ((n/2)!*a(n/2))^2.
lcm(1,2,..,n)*a(n) is a divisor of n! and n!/(lcm(1,2,..,n)*a(n)) is a square.

Crossrefs

Programs

A363917 a(n) = Product_{p in Factors(n)} mult(p) * n^mult(p) / p, where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.

Original entry on oeis.org

1, 1, 1, 16, 1, 6, 1, 768, 54, 10, 1, 576, 1, 14, 15, 131072, 1, 1944, 1, 1600, 21, 22, 1, 165888, 250, 26, 19683, 3136, 1, 900, 1, 83886080, 33, 34, 35, 1119744, 1, 38, 39, 768000, 1, 1764, 1, 7744, 12150, 46, 1, 169869312, 686, 25000, 51, 10816, 1, 4251528
Offset: 1

Views

Author

Peter Luschny, Jul 19 2023

Keywords

Crossrefs

Programs

  • Maple
    A363917 := n-> local p; mul(p[2] * n^p[2] / p[1], p in ifactors(n)[2]):
    seq(A363917(n), n = 1..54);

Formula

a(n) = A363918(n) * A205959(n).
a(n) = A363923(n) * A005361(n).

A382941 a(n) = exp(Sum_{d|n} A382883(d)*log(n/d)).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 4, 3, 1, 11, 3, 13, 1, 1, 16, 17, 2, 19, 5, 1, 1, 23, 18, 5, 1, 9, 7, 29, 1, 31, 64, 1, 1, 1, 36, 37, 1, 1, 50, 41, 1, 43, 11, 5, 1, 47, 72, 7, 2, 1, 13, 53, 12, 1, 98, 1, 1, 59, 15, 61, 1, 7, 512, 1, 1, 67, 17, 1, 1, 71, 648, 73, 1, 3, 19
Offset: 1

Views

Author

Peter Luschny, Apr 09 2025

Keywords

Comments

See the comments in A382883.

Crossrefs

Programs

  • Maple
    h := proc(n) option remember; local j; ifelse(n = 1, 1,
    -add(ifelse(j = 1, 1, padic:-ordp(n, j))*h(j), j = 1..n-1)) end:
    a := n -> local d; simplify(exp(add(h(d)*log(n/d), d in numtheory:-divisors(n)))):
    seq(a(n), n = 1..76);
  • Mathematica
    V[n_, e_] := If[e == 1, 1, IntegerExponent[n, e]]; f[n_] := f[n] = -DivisorSum[n, V[n, #] * f[#] &, # < n &]; f[1] = 1; a[n_] := Exp[DivisorSum[n, f[#] * Log[n/#] &]]; Array[a, 100] (* Amiram Eldar, Apr 29 2025 *)
  • SageMath
    def A382941(n: int) -> int: return simplify(exp(sum(A382883(d)*log(n//d) for d in n.divisors())))
    print([A382941(n) for n in srange(1, 76)]);

Formula

Restricting the sum to prime divisors of n gives A205959(n).
a(k) = 1 <=> k in A000469 <=> k is a nonprime squarefree number.
a(k) != 1 <=> k in A383263 <=> k is prime or divisible by a square greater than 1.

A304404 If n = Product (p_j^k_j) then a(n) = Product (n/p_j^k_j).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 900, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 1764, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 3600, 1, 62, 63, 1, 65, 4356, 1, 68, 69, 4900, 1, 72, 1, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (60/2^2) * (60/3) * (60/5) = 15 * 20 * 12 = 3600.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (n/#[[1]]^#[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 75}]
    Table[n^(PrimeNu[n] - 1), {n, 75}]
  • PARI
    A304404(n) = (n^(omega(n)-1)); \\ Antti Karttunen, Aug 06 2018
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A304404(n): return int(n**(primenu(n)-1)) # Chai Wah Wu, Jul 12 2023

Formula

a(n) = n^(omega(n)-1), where omega() = A001221.
a(n) = A062509(n)/n.

A363918 a(n) = Product_{p in Factors(n)} mult(p)*n^(mult(p) - 1), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.

Original entry on oeis.org

1, 1, 1, 8, 1, 1, 1, 192, 18, 1, 1, 24, 1, 1, 1, 16384, 1, 36, 1, 40, 1, 1, 1, 1728, 50, 1, 2187, 56, 1, 1, 1, 5242880, 1, 1, 1, 5184, 1, 1, 1, 4800, 1, 1, 1, 88, 90, 1, 1, 442368, 98, 100, 1, 104, 1, 8748, 1, 9408, 1, 1, 1, 120, 1, 1, 126, 6442450944, 1, 1, 1, 136
Offset: 1

Views

Author

Peter Luschny, Jul 19 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> local p: mul(p[2] * n^(p[2] - 1), p in ifactors(n)[2]):
    seq(a(n), n = 1..68);
  • PARI
    a(n) = my(f=factor(n)[, 2]); vecprod(f)*n^(vecsum(f)-#f); \\ Michel Marcus, Jul 19 2023

Formula

a(n) / A363919(n) = A005361(n).
a(n) * A205959(n) = A005361(n) * A363923(n) = A363917(n).

A383438 a(n) = Sum_{k=1..n} Product_{p|k, p prime} k/p.

Original entry on oeis.org

1, 2, 3, 5, 6, 12, 13, 17, 20, 30, 31, 55, 56, 70, 85, 93, 94, 148, 149, 189, 210, 232, 233, 329, 334, 360, 369, 425, 426, 1326, 1327, 1343, 1376, 1410, 1445, 1661, 1662, 1700, 1739, 1899, 1900, 3664, 3665, 3753, 3888, 3934, 3935, 4319, 4326, 4576, 4627, 4731
Offset: 1

Views

Author

Peter Luschny, Apr 27 2025

Keywords

Crossrefs

Cf. A205959.

Programs

  • Mathematica
    a[n_]:=Sum[Product[k/p,{p,Select[Divisors[k],PrimeQ[#] &]}],{k,n}]; Array[a,52] (* Stefano Spezia, Apr 27 2025 *)
  • PARI
    a(n) = sum(k=1, n, my(f=factor(k)[, 1]); prod(i=1, #f, k/f[i])); \\ Michel Marcus, Apr 27 2025
  • SageMath
    from itertools import accumulate
    def A383438List(len: int) -> list[int]:
        return list(accumulate([A205959(n) for n in range(1, len + 1)]))
    print(A383438List(52))
    

Formula

a(n) = Sum_{k=1..n} A205959(k).
Showing 1-10 of 10 results.