A363918 a(n) = Product_{p in Factors(n)} mult(p)*n^(mult(p) - 1), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
1, 1, 1, 8, 1, 1, 1, 192, 18, 1, 1, 24, 1, 1, 1, 16384, 1, 36, 1, 40, 1, 1, 1, 1728, 50, 1, 2187, 56, 1, 1, 1, 5242880, 1, 1, 1, 5184, 1, 1, 1, 4800, 1, 1, 1, 88, 90, 1, 1, 442368, 98, 100, 1, 104, 1, 8748, 1, 9408, 1, 1, 1, 120, 1, 1, 126, 6442450944, 1, 1, 1, 136
Offset: 1
Keywords
Programs
-
Maple
a := n -> local p: mul(p[2] * n^(p[2] - 1), p in ifactors(n)[2]): seq(a(n), n = 1..68);
-
PARI
a(n) = my(f=factor(n)[, 2]); vecprod(f)*n^(vecsum(f)-#f); \\ Michel Marcus, Jul 19 2023