cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363918 a(n) = Product_{p in Factors(n)} mult(p)*n^(mult(p) - 1), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.

Original entry on oeis.org

1, 1, 1, 8, 1, 1, 1, 192, 18, 1, 1, 24, 1, 1, 1, 16384, 1, 36, 1, 40, 1, 1, 1, 1728, 50, 1, 2187, 56, 1, 1, 1, 5242880, 1, 1, 1, 5184, 1, 1, 1, 4800, 1, 1, 1, 88, 90, 1, 1, 442368, 98, 100, 1, 104, 1, 8748, 1, 9408, 1, 1, 1, 120, 1, 1, 126, 6442450944, 1, 1, 1, 136
Offset: 1

Views

Author

Peter Luschny, Jul 19 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> local p: mul(p[2] * n^(p[2] - 1), p in ifactors(n)[2]):
    seq(a(n), n = 1..68);
  • PARI
    a(n) = my(f=factor(n)[, 2]); vecprod(f)*n^(vecsum(f)-#f); \\ Michel Marcus, Jul 19 2023

Formula

a(n) / A363919(n) = A005361(n).
a(n) * A205959(n) = A005361(n) * A363923(n) = A363917(n).
Showing 1-1 of 1 results.