cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363920 a(n) = n^(tpf(n) * dpf(n)), where tpf(n) is the total number of prime factors of n if n >= 2 and otherwise = 0; dpf(n) is the number of distinct prime factors of n if n >= 2 and otherwise = 0.

Original entry on oeis.org

1, 1, 2, 3, 16, 5, 1296, 7, 512, 81, 10000, 11, 2985984, 13, 38416, 50625, 65536, 17, 34012224, 19, 64000000, 194481, 234256, 23, 110075314176, 625, 456976, 19683, 481890304, 29, 19683000000000, 31, 33554432, 1185921, 1336336, 1500625, 2821109907456, 37, 2085136
Offset: 0

Views

Author

Peter Luschny, Jul 16 2023

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    dpf := n -> ifelse(n = 0, 0, nops(factorset(n))): # dpf = [0] U [A001221].
    tpf := n -> ifelse(n = 0, 0, bigomega(n)):        # tpf = [0] U [A001222].
    A363920 := n -> n^(tpf(n) * dpf(n)):
    seq(A363920(n), n = 0..38);
  • PARI
    dpf(n, f) = if (n>=2, omega(f), 0);
    tpf(n, f) = if (n>=2, bigomega(f), 0);
    a(n) = my(f=factor(n)); n^(tpf(n,f) * dpf(n,f)); \\ Michel Marcus, Jul 27 2023

Formula

a(n) = n <=> n term of A000040(n) prepended with 1, n = 1, 2, 3, 5, 7, ...
a(n) != n <=> n term of A002808(n) prepended with 0, n = 0, 4, 6, 8, ...
Moebius(a(n)) = -[n is prime] for n >= 2, where [ ] denotes the Iverson bracket.

A363918 a(n) = Product_{p in Factors(n)} mult(p)*n^(mult(p) - 1), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.

Original entry on oeis.org

1, 1, 1, 8, 1, 1, 1, 192, 18, 1, 1, 24, 1, 1, 1, 16384, 1, 36, 1, 40, 1, 1, 1, 1728, 50, 1, 2187, 56, 1, 1, 1, 5242880, 1, 1, 1, 5184, 1, 1, 1, 4800, 1, 1, 1, 88, 90, 1, 1, 442368, 98, 100, 1, 104, 1, 8748, 1, 9408, 1, 1, 1, 120, 1, 1, 126, 6442450944, 1, 1, 1, 136
Offset: 1

Views

Author

Peter Luschny, Jul 19 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> local p: mul(p[2] * n^(p[2] - 1), p in ifactors(n)[2]):
    seq(a(n), n = 1..68);
  • PARI
    a(n) = my(f=factor(n)[, 2]); vecprod(f)*n^(vecsum(f)-#f); \\ Michel Marcus, Jul 19 2023

Formula

a(n) / A363919(n) = A005361(n).
a(n) * A205959(n) = A005361(n) * A363923(n) = A363917(n).
Showing 1-2 of 2 results.