cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A335023 Ratios of consecutive terms of A334958.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 75, 8, 1, 18, 1, 4, 21, 22, 1, 24, 5, 26, 9, 196, 1, 30, 1, 16, 33, 34, 5, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 375, 76, 847
Offset: 1

Views

Author

Petros Hadjicostas, May 19 2020

Keywords

Comments

Conjecture: a(n) = 1 if and only if n+1 is prime.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
    g:= proc(n) g(n):= (f-> igcd(b(n)*f, f))(n!) end:
    a:= n-> g(n+1)/g(n):
    seq(a(n), n=1..80);  # Alois P. Heinz, May 20 2020
  • Mathematica
    b[n_] := b[n] = -(-1)^n/n + If[n==1, 0, b[n-1]];
    g[n_] := GCD[b[n] #, #]&[n!];
    a[n_] := g[n+1]/g[n];
    Array[a, 80] (* Jean-François Alcover, Nov 30 2020, after Alois P. Heinz *)
  • PARI
    f(n) = n!*sum(k=2, n, (-1)^k/k); \\ A024168
    g(n) = gcd(f(n+1), f(n)); \\ A334958
    a(n) = g(n+1)/g(n); \\ Michel Marcus, May 20 2020

Formula

a(n) = A334958(n+1)/A334958(n).

A056612 a(n) = gcd(n!, n!*(1 + 1/2 + 1/3 + ... + 1/n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 156764160000, 9876142080000, 217275125760000, 217275125760000, 1738201006080000, 1738201006080000
Offset: 1

Views

Author

Leroy Quet, Aug 08 2000

Keywords

Comments

The first difference between this sequence and A131657 occurs for n = 20, while the first difference between this sequence and A131658 occurs for n = 21. - Christian Krattenthaler, Sep 30 2007

Examples

			a(4) = gcd(4!, 4!*(1 + 1/2 + 1/3 + 1/4)) = gcd(24, 50) = 2.
a(4) = gcd(A000254(5), A000254(4)) = gcd(5!*(1 + 1/2 + 1/3 + 1/4 + 1/5), 4!*(1 + 1/2 + 1/3 + 1/4)) = gcd(274, 50) = 2. - _Petros Hadjicostas_, May 18 2020
		

Crossrefs

Cf. A334958 (similar sequence for the alternative harmonic series).

Programs

  • Mathematica
    Table[GCD[#, # Total@ Map[1/# &, Range@ n]] &[n!], {n, 25}] (* Michael De Vlieger, Sep 23 2017 *)
    a[n_] := n!/Denominator@ HarmonicNumber@ n; Array[a, 25] (* Robert G. Wilson v, Jun 30 2018 *)
  • PARI
    a(n) = gcd(n!, n!*sum(k=1, n, 1/k)); \\ Michel Marcus, Jul 14 2018
    
  • PARI
    a(n) = gcd(stirling(n+1, 2, 1), n!); \\ Michel Marcus, May 20 2020

Formula

a(n) = A000142(n)/A002805(n) = A000254(n)/A001008(n). - Franz Vrabec, Sep 13 2005
a(n) = gcd(A000254(n+1), A000254(n)). - Petros Hadjicostas, May 18 2020
a(n) = gcd(Stirling1(n+1, 2), n!). - Michel Marcus, May 20 2020

A075829 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(d(n)*x + a(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

1, 0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]
Difference between the denominator and the numerator of the (n-1)-th alternating harmonic number Sum_{k=1..n-1} (-1)^(k+1)*1/k = A058313(n-1)/A058312(n-1). - Alexander Adamchuk, Jul 22 2006
From Petros Hadjicostas, May 06 2020: (Start)
Inspired by Michael Somos's result below, we established the following formulas (valid for n >= 2). All the denominators in the first three formulas are equal to A334958(n).
b(n) = A024167(n)/gcd(A024167(n-1), A024167(n)).
c(n) = A024168(n)/gcd(A024168(n-1), A024168(n)).
d(n) = A024167(n-1)/gcd(A024167(n-1), A024167(n)).
b(n) + c(n) = n*(d(n) + a(n)).
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)). (End)

Crossrefs

Cf. A075827 (= b), A075828 (= c), A075830 (= d).

Programs

  • Mathematica
    Denominator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n-1}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n-1}],{n,1,30}]] (* Alexander Adamchuk, Jul 22 2006 *)
  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(denominator(u(n)), 0, x);

Formula

a(n) = A024168(n-1)/gcd(A024168(n-1), A024168(n)). - Michael Somos, Oct 29 2002
From Alexander Adamchuk, Jul 22 2006: (Start)
a(n) = A058312(n-1) - A058313(n-1) for n > 1 with a(1) = 1.
a(n) = denominator(Sum_{k=1..n-1} (-1)^(k+1)*1/k) - numerator(Sum_{k=1..n-1}(-1)^(k+1)*1/k). (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020

A075827 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(a(n)*x + b(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

1, 1, 5, 14, 47, 222, 319, 2132, 5637, 16270, 20417, 217284, 263111, 3323194, 3920925, 764392, 1768477, 29382138, 33464927, 622740028, 3502177707, 3436155514, 3825136961, 86449058184, 95405331155, 469336577606, 514159128837, 1519292745404, 236266661971, 6755272778730, 7313175618421
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]

Crossrefs

Cf. A075828 (= b), A075829 (= d), A075830 (= c).

Programs

  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(numerator(u(n)), 1, x);
    for(n=1, 30, print1(a(n)", ")) \\ Petros Hadjicostas, May 06 2020

Formula

From Petros Hadjicostas, May 18 2020: (Start)
a(n) = A024167(n)/gcd(A024167(n), A024167(n-1)) = A024167(n)/A334958(n-1) for n >= 2. (Cf. Michael Somos's result for d = A075829 using A024168.)
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)) for n >= 2. (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020
More terms from Michel Marcus, Aug 01 2025

A075828 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(b(n)*x + a(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

0, 1, 1, 10, 13, 138, 101, 1228, 1923, 8930, 7303, 115356, 97249, 1721846, 1484475, 388760, 681971, 14725926, 13093585, 308430212, 1386466053, 1685280806, 1529091919, 42052434936, 38450390845, 226713176794, 208661769963
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]

Crossrefs

Cf. A075827 (= b), A075829 (= d), A075830 (= c).

Programs

  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(numerator(u(n)), 0 ,x)

Formula

From Petros Hadjicostas, May 18 2020: (Start)
a(n) = A024168(n)/gcd(A024168(n), A024168(n-1)) = A024168(n)/A334958(n) for n >= 2. (Cf. Michael Somos's claim for d = A075829 using A024168.)
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)) for n >= 2. (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020

A335024 Ratios of consecutive terms of A056612.

Original entry on oeis.org

1, 1, 2, 1, 18, 1, 4, 1, 10, 1, 12, 1, 14, 15, 8, 1, 54, 1, 100, 63, 22, 1, 8, 1, 26, 3, 28, 1, 30, 1, 16, 363, 34, 35, 36, 1, 38, 39, 40, 1, 294, 1, 4, 45, 46, 1, 48, 1, 50, 51, 52, 1, 162, 55, 56, 57, 58, 1, 60, 1, 62, 189, 32, 65, 198, 1, 68, 23, 70, 1, 24, 1, 74, 75, 76, 847, 78, 1, 80
Offset: 1

Views

Author

Petros Hadjicostas, May 19 2020

Keywords

Comments

Conjecture 1: a(n) = 1 if and only if n + 1 = p^k for some prime p and some positive integer k < p.
Conjecture 2 (due to Alois P. Heinz): a(n) = 1 <=> n+1 in A136327.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= (1/n +`if`(n=1, 0, b(n-1))) end:
    g:= proc(n) g(n):= (f-> igcd(b(n)*f, f))(n!) end:
    a:= n-> g(n+1)/g(n):
    seq(a(n), n=1..80);  # Alois P. Heinz, May 20 2020
  • Mathematica
    g[n_] := GCD[n!, n! Sum[1/k, {k, 1, n}]];
    a[n_] := g[n + 1]/g[n];
    Array[a, 80] (* Jean-François Alcover, Dec 01 2020, after PARI *)
  • PARI
    g(n) = gcd(n!, n!*sum(k=1, n, 1/k)); \\ A056612
    a(n) = g(n+1)/g(n); \\ Michel Marcus, May 20 2020

Formula

a(n) = A056612(n+1)/A056612(n).
Showing 1-6 of 6 results.