A335023 Ratios of consecutive terms of A334958.
1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 75, 8, 1, 18, 1, 4, 21, 22, 1, 24, 5, 26, 9, 196, 1, 30, 1, 16, 33, 34, 5, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 375, 76, 847
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end: g:= proc(n) g(n):= (f-> igcd(b(n)*f, f))(n!) end: a:= n-> g(n+1)/g(n): seq(a(n), n=1..80); # Alois P. Heinz, May 20 2020
-
Mathematica
b[n_] := b[n] = -(-1)^n/n + If[n==1, 0, b[n-1]]; g[n_] := GCD[b[n] #, #]&[n!]; a[n_] := g[n+1]/g[n]; Array[a, 80] (* Jean-François Alcover, Nov 30 2020, after Alois P. Heinz *)
-
PARI
f(n) = n!*sum(k=2, n, (-1)^k/k); \\ A024168 g(n) = gcd(f(n+1), f(n)); \\ A334958 a(n) = g(n+1)/g(n); \\ Michel Marcus, May 20 2020
Comments