A075829
Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(d(n)*x + a(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
Original entry on oeis.org
1, 0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1
-
Denominator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n-1}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n-1}],{n,1,30}]] (* Alexander Adamchuk, Jul 22 2006 *)
-
u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
a(n) = polcoeff(denominator(u(n)), 0, x);
A075830
Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(a(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
Original entry on oeis.org
0, 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599
Offset: 1
Apart from the leading term, same as
A058313.
-
u(n)=if(n<2,x,(n-1)^2/u(n-1)+1);
a(n)=polcoeff(denominator(u(n)),1,x);
A334958
GCD of consecutive terms of the factorial times the alternating harmonic series.
Original entry on oeis.org
1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 18144000, 145152000, 145152000, 2612736000, 2612736000, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000, 135579678474240000, 26573616980951040000, 26573616980951040000
Offset: 1
A024167(4) = 4!*(1 - 1/2 + 1/3 - 1/4) = 14, A024167(5) = 5!*(1 - 1/2 + 1/3 - 1/4 + 1/5) = 94, A024168(4) = 4!*(1/2 - 1/3 + 1/4) = 10, and A024168(5) = 5!*(1/2 - 1/3 + 1/4 - 1/5) = 26. Then a(4) = gcd(14, 94) = gcd(10, 26) = gcd(14, 4!) = gcd(10, 4!) = gcd(14, 10) = 2.
Cf.
A000142,
A024167,
A024168,
A025527,
A048671,
A058312,
A058313,
A075827,
A075828,
A075829,
A075830.
Cf.
A056612 (similar sequence for the harmonic series).
-
b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
a:= n-> (f-> igcd(b(n)*f, f))(n!):
seq(a(n), n=1..30); # Alois P. Heinz, May 18 2020
-
b[n_] := b[n] = -(-1)^n/n + If[n == 1, 0, b[n-1]];
a[n_] := GCD[b[n] #, #]&[n!];
Array[a, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)
-
def A():
a, b, n = 1, 1, 2
while True:
yield gcd(a, b)
b, a = a, a + b * n * n
n += 1
a = A(); print([next(a) for in range(29)]) # _Peter Luschny, May 19 2020
A075828
Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(b(n)*x + a(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
Original entry on oeis.org
0, 1, 1, 10, 13, 138, 101, 1228, 1923, 8930, 7303, 115356, 97249, 1721846, 1484475, 388760, 681971, 14725926, 13093585, 308430212, 1386466053, 1685280806, 1529091919, 42052434936, 38450390845, 226713176794, 208661769963
Offset: 1
-
u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
a(n) = polcoeff(numerator(u(n)), 0 ,x)
Showing 1-4 of 4 results.
Comments