cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A024168 a(n) = n! * (1 + Sum_{j=1..n} (-1)^j/j).

Original entry on oeis.org

1, 0, 1, 1, 10, 26, 276, 1212, 14736, 92304, 1285920, 10516320, 166112640, 1680462720, 29753498880, 359124192000, 7053661440000, 98989454592000, 2137497610752000, 34210080898560000, 805846718380032000, 14489879077804032000, 369868281883398144000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations of n letters all cycles of which have length <= n/2, a quantity which arises in the solution to the One Hundred Prisoners problem. - Jim Ferry (jferry(AT)alum.mit.edu), Mar 29 2007

Crossrefs

A075829(n) = a(n-1)/gcd(a(n-1), a(n)).

Programs

  • Maple
    a := n -> n!*((-1)^n*LerchPhi(-1, 1, n + 1) + 1 - log(2));
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Dec 27 2018
  • Mathematica
    f[k_] := (k + 1) (-1)^(k + 1)
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 22}]    (* A024168 signed *)
    (* Clark Kimberling, Dec 30 2011 *)
  • PARI
    x='x+O('x^33); concat([0],Vec(serlaplace((x-log(1+x))/(1-x)))) \\ Joerg Arndt, Dec 27 2018

Formula

From Michael Somos, Oct 29 2002: (Start)
E.g.f.: (log(x+1)-1)/(x-1).
a(n) = a(n-1)+a(n-2)*(n-1)^2, n>=2. (End)
a(0) = 1, a(n) = a(n-1)*n + (-1)^n*(n-1)!. - Daniel Suteu, Feb 06 2017
a(n) = n!*((-1)^n*LerchPhi(-1, 1, n+1) + 1 - log(2)). - Peter Luschny, Dec 27 2018
Limit_{n->oo} a(n)/n! = 1 - log(2) = A244009. - Alois P. Heinz, Jul 08 2022

Extensions

More terms from Michael Somos, Oct 29 2002
a(0)=1 prepended and edited by Alois P. Heinz, Sep 24 2023

A075830 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(a(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

0, 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n)-n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]
From Petros Hadjicostas, May 05 2020: (Start)
Given x > 0, u(n) = (A075827(n)*x + A075828(n))/(a(n)*x + A075829(n)) = (b(n)*x + c(n))/(a(n)*x + d(n)) with gcd(gcd(b(n), c(n)), gcd(a(n), d(n))) = 1 for each n >= 1.
Conjecture 1: Define the sequences (A(n): n >= 1) and (B(n): n >= 1) by A(n+1) = n^2/A(n) + 1 for n >= 2 with A(1) = infinity and A(2) = 1, and B(n+1) = n^2/B(n) + 1 for n >= 3 with B(1) = 0, B(2) = infinity, and B(3) = 1. Then a(n) = denominator(A(n)), b(n) = numerator(A(n)), c(n) = numerator(B(n)), and d(n) = denominator(B(n)) (assuming infinity = 1/0). Also, gcd(a(n), d(n)) = 1.
In 2002, Michael Somos claimed that d(n) = A024168(n-1)/gcd(A024168(n-1), A024168(n)) for n >= 2. In 2006, N. J. A. Sloane claimed that a(n) = A058313(n-1) for n >= 2 while Alexander Adamchuk claimed that d(n) = A058312(n-1) - A058313(n-1) for n >= 2.
Conjecture 2: a(n) = A024167(n-1)/gcd(A024167(n-1), A024167(n)).
Conjecture 3: b(p) = a(p+1) for p = 1 or prime. In general, it seems that b(n) = A048671(n)*a(n+1) for all n for which A048671(n) < n.
Conjecture 4: c(n) = n*(a(n) + d(n)) - b(n) for n >= 1. (End)
All conjectures are proved in the link below except for the second part of Conjecture 3. - Petros Hadjicostas, May 21 2020

Crossrefs

Apart from the leading term, same as A058313.
Cf. A075827 (= b), A075828 (= c), A075829 (= d).

Programs

  • PARI
    u(n)=if(n<2,x,(n-1)^2/u(n-1)+1);
    a(n)=polcoeff(denominator(u(n)),1,x);

Extensions

Name edited by Petros Hadjicostas, May 04 2020

A334958 GCD of consecutive terms of the factorial times the alternating harmonic series.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 18144000, 145152000, 145152000, 2612736000, 2612736000, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000, 135579678474240000, 26573616980951040000, 26573616980951040000
Offset: 1

Views

Author

Petros Hadjicostas, May 17 2020

Keywords

Comments

For n = 1..14, we have a(n) = A025527(n), but a(15) = 18144000 <> 3628800 = A025527(15).
It appears that A025527(n) | a(n) for all n >= 1 and A025527(n) = a(n) for infinitely many n. In addition, it seems that a(n)/a(n-1) = A048671(n) for infinitely many n >= 2. However, I have not established these claims.
This sequence appears in formulas for sequences A075827, A075828, A075829, and A075830 (the first one of which was established in 2002 by Michael Somos).
Conjecture: a(n) = n! * Product_{p <= n} p^min(0, v_p(H'(n))), where the product ranges over primes p, H'(n) = Sum_{k=1..n} (-1)^(k+1)/k, and v_p(r) is the p-adic valuation of rational r (checked for n < 1100).

Examples

			A024167(4) = 4!*(1 - 1/2 + 1/3 - 1/4) = 14, A024167(5) = 5!*(1 - 1/2 + 1/3 - 1/4 + 1/5) = 94, A024168(4) = 4!*(1/2 - 1/3 + 1/4) = 10, and A024168(5) = 5!*(1/2 - 1/3 + 1/4 - 1/5) = 26. Then a(4) = gcd(14, 94) = gcd(10, 26) = gcd(14, 4!) = gcd(10, 4!) = gcd(14, 10) = 2.
		

Crossrefs

Cf. A056612 (similar sequence for the harmonic series).

Programs

  • Maple
    b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
    a:= n-> (f-> igcd(b(n)*f, f))(n!):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 18 2020
  • Mathematica
    b[n_] := b[n] = -(-1)^n/n + If[n == 1, 0, b[n-1]];
    a[n_] := GCD[b[n] #, #]&[n!];
    Array[a, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)
  • SageMath
    def A():
        a, b, n = 1, 1, 2
        while True:
            yield gcd(a, b)
            b, a = a, a + b * n * n
            n += 1
    a = A(); print([next(a) for  in range(29)]) # _Peter Luschny, May 19 2020

Formula

a(n) = gcd(A024167(n+1), A024167(n)) = gcd(A024168(n+1), A024168(n)) = gcd(A024167(n), n!) = gcd(A024168(n), n!) = gcd(A024167(n), A024168(n)).

A075827 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(a(n)*x + b(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

1, 1, 5, 14, 47, 222, 319, 2132, 5637, 16270, 20417, 217284, 263111, 3323194, 3920925, 764392, 1768477, 29382138, 33464927, 622740028, 3502177707, 3436155514, 3825136961, 86449058184, 95405331155, 469336577606, 514159128837, 1519292745404, 236266661971, 6755272778730, 7313175618421
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]

Crossrefs

Cf. A075828 (= b), A075829 (= d), A075830 (= c).

Programs

  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(numerator(u(n)), 1, x);
    for(n=1, 30, print1(a(n)", ")) \\ Petros Hadjicostas, May 06 2020

Formula

From Petros Hadjicostas, May 18 2020: (Start)
a(n) = A024167(n)/gcd(A024167(n), A024167(n-1)) = A024167(n)/A334958(n-1) for n >= 2. (Cf. Michael Somos's result for d = A075829 using A024168.)
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)) for n >= 2. (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020
More terms from Michel Marcus, Aug 01 2025

A075828 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(b(n)*x + a(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

0, 1, 1, 10, 13, 138, 101, 1228, 1923, 8930, 7303, 115356, 97249, 1721846, 1484475, 388760, 681971, 14725926, 13093585, 308430212, 1386466053, 1685280806, 1529091919, 42052434936, 38450390845, 226713176794, 208661769963
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]

Crossrefs

Cf. A075827 (= b), A075829 (= d), A075830 (= c).

Programs

  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(numerator(u(n)), 0 ,x)

Formula

From Petros Hadjicostas, May 18 2020: (Start)
a(n) = A024168(n)/gcd(A024168(n), A024168(n-1)) = A024168(n)/A334958(n) for n >= 2. (Cf. Michael Somos's claim for d = A075829 using A024168.)
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)) for n >= 2. (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020

A119248 a(n) is the difference between denominator and numerator of the n-th alternating harmonic number Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n).

Original entry on oeis.org

0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1

Views

Author

Alexander Adamchuk, Jul 22 2006

Keywords

Comments

a(n)/A058312(n) = 1 - A058313(n)/A058312(n) appears in the locker puzzle (see the links in A364317) for the probability of success with the strategy used there for n lockers and allowed openings of up to floor(n/2) lockers. Note that gcd(a(n), A058312(n)) = 1. - Wolfdieter Lang, Aug 12 2023

Crossrefs

Programs

  • Mathematica
    Denominator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]
  • PARI
    a(n) = my(x=sum(k=1, n, (-1)^(k+1)/k)); denominator(x) - numerator(x); \\ Michel Marcus, May 07 2020

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/k) - numerator(Sum_{k=1..n} (-1)^(k+1)/k).
a(n) = A058312(n) - A058313(n).
a(n) = A075829(n+1).
a(n) = numerator(Sum_{k=2..n} (-1)^k/k). (Cf. A024168.) - Petros Hadjicostas, May 17 2020
Showing 1-6 of 6 results.