A024168
a(n) = n! * (1 + Sum_{j=1..n} (-1)^j/j).
Original entry on oeis.org
1, 0, 1, 1, 10, 26, 276, 1212, 14736, 92304, 1285920, 10516320, 166112640, 1680462720, 29753498880, 359124192000, 7053661440000, 98989454592000, 2137497610752000, 34210080898560000, 805846718380032000, 14489879077804032000, 369868281883398144000
Offset: 0
A075829(n) = a(n-1)/gcd(a(n-1), a(n)).
-
a := n -> n!*((-1)^n*LerchPhi(-1, 1, n + 1) + 1 - log(2));
seq(simplify(a(n)), n=0..21); # Peter Luschny, Dec 27 2018
-
f[k_] := (k + 1) (-1)^(k + 1)
t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 22}] (* A024168 signed *)
(* Clark Kimberling, Dec 30 2011 *)
-
x='x+O('x^33); concat([0],Vec(serlaplace((x-log(1+x))/(1-x)))) \\ Joerg Arndt, Dec 27 2018
A075830
Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(a(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
Original entry on oeis.org
0, 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599
Offset: 1
Apart from the leading term, same as
A058313.
-
u(n)=if(n<2,x,(n-1)^2/u(n-1)+1);
a(n)=polcoeff(denominator(u(n)),1,x);
A334958
GCD of consecutive terms of the factorial times the alternating harmonic series.
Original entry on oeis.org
1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 18144000, 145152000, 145152000, 2612736000, 2612736000, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000, 135579678474240000, 26573616980951040000, 26573616980951040000
Offset: 1
A024167(4) = 4!*(1 - 1/2 + 1/3 - 1/4) = 14, A024167(5) = 5!*(1 - 1/2 + 1/3 - 1/4 + 1/5) = 94, A024168(4) = 4!*(1/2 - 1/3 + 1/4) = 10, and A024168(5) = 5!*(1/2 - 1/3 + 1/4 - 1/5) = 26. Then a(4) = gcd(14, 94) = gcd(10, 26) = gcd(14, 4!) = gcd(10, 4!) = gcd(14, 10) = 2.
Cf.
A000142,
A024167,
A024168,
A025527,
A048671,
A058312,
A058313,
A075827,
A075828,
A075829,
A075830.
Cf.
A056612 (similar sequence for the harmonic series).
-
b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
a:= n-> (f-> igcd(b(n)*f, f))(n!):
seq(a(n), n=1..30); # Alois P. Heinz, May 18 2020
-
b[n_] := b[n] = -(-1)^n/n + If[n == 1, 0, b[n-1]];
a[n_] := GCD[b[n] #, #]&[n!];
Array[a, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)
-
def A():
a, b, n = 1, 1, 2
while True:
yield gcd(a, b)
b, a = a, a + b * n * n
n += 1
a = A(); print([next(a) for in range(29)]) # _Peter Luschny, May 19 2020
A075827
Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(a(n)*x + b(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
Original entry on oeis.org
1, 1, 5, 14, 47, 222, 319, 2132, 5637, 16270, 20417, 217284, 263111, 3323194, 3920925, 764392, 1768477, 29382138, 33464927, 622740028, 3502177707, 3436155514, 3825136961, 86449058184, 95405331155, 469336577606, 514159128837, 1519292745404, 236266661971, 6755272778730, 7313175618421
Offset: 1
-
u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
a(n) = polcoeff(numerator(u(n)), 1, x);
for(n=1, 30, print1(a(n)", ")) \\ Petros Hadjicostas, May 06 2020
A075828
Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(b(n)*x + a(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
Original entry on oeis.org
0, 1, 1, 10, 13, 138, 101, 1228, 1923, 8930, 7303, 115356, 97249, 1721846, 1484475, 388760, 681971, 14725926, 13093585, 308430212, 1386466053, 1685280806, 1529091919, 42052434936, 38450390845, 226713176794, 208661769963
Offset: 1
-
u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
a(n) = polcoeff(numerator(u(n)), 0 ,x)
A119248
a(n) is the difference between denominator and numerator of the n-th alternating harmonic number Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n).
Original entry on oeis.org
0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1
-
Denominator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)/k,{k,1,n}],{n,1,30}]]
-
a(n) = my(x=sum(k=1, n, (-1)^(k+1)/k)); denominator(x) - numerator(x); \\ Michel Marcus, May 07 2020
Showing 1-6 of 6 results.
Comments