cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A120263 Ratio of the numerator of n*HarmonicNumber[n] to the numerator of HarmonicNumber[n]: A096617(n)/A001008(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1
Offset: 1

Views

Author

Alexander Adamchuk, Jun 26 2006

Keywords

Comments

a(n) is not equal to 1 when n belongs to A074791 - numbers n such that n does not divide the denominator of the n-th harmonic number.
a(n) is almost always equal to 1 except for n=6,18,20,21,33,42,54,.. when a(n) seems to be equal to a prime divisor of n.
a(n) could be equal to a squared prime divisor of n as for n=100,294,500,847,..

Crossrefs

Programs

  • Magma
    [Numerator(n*HarmonicNumber(n))/Numerator(HarmonicNumber(n)): n in [1..100]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Numerator[Table[n*Sum[1/i,{i,1,n}],{n,1,500}]]/Numerator[Table[Sum[1/i,{i,1,n}],{n,1,500}]]
  • PARI
    {h(n) = sum(k=1,n,1/k)};
    for(n=1,100, print1(numerator(n*h(n))/numerator(h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
    

Formula

a(n) = A096617(n)/A001008(n) = numerator[n*Sum[1/i,{i,1,n}]] / numerator[Sum[1/i,{i,1,n}]].
a(n) = n / gcd(denominator(H(n)),n), where H(n) = sum(1/k, k=1..n). [Gary Detlefs, Sep 05 2011]
a(n) = A096617(n)*A110566(n)/A025529(n). [Arkadiusz Wesolowski, Mar 29 2012]

A025529 a(n) = (1/1 + 1/2 + ... + 1/n)*lcm{1,2,...,n}.

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 1089, 2283, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 825887397, 837527025, 848612385, 859193865, 19994251455, 20217344325, 102157567401, 103187226801, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Keywords

Comments

First column of A027446. - Eric Desbiaux, Mar 29 2013
From Amiram Eldar and Thomas Ordowski, Aug 07 2019: (Start)
By Wolstenholme's theorem, if p > 3 is a prime, then p^2 | a(p-1).
Conjecture: for n > 3, if n^2 | a(n-1), then n is a prime.
Note that if n = p^2 with prime p > 3, then n | a(n-1).
It seems that composite numbers n such that n | a(n-1) are only the squares n = p^2 of primes p > 3.
Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164.
The n-th triangular number n(n+1)/2 | a(n) for n = 1, 2, 6, 4422, ... (End)

Crossrefs

Differs from A096617 at 7th term.

Programs

  • GAP
    List([1..30],n->Sum([1..n],k->1/k)*Lcm([1..n])); # Muniru A Asiru, Apr 02 2018
    
  • Magma
    [HarmonicNumber(n)*Lcm([1..n]):n in [1..30]]; // Marius A. Burtea, Aug 07 2019
  • Maple
    a:= n-> add(1/k, k=1..n)*ilcm($1..n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 14 2013
  • Mathematica
    Table[HarmonicNumber[n]*LCM @@ Range[n], {n, 27}] (* Arkadiusz Wesolowski, Mar 29 2012 *)
  • PARI
    a(n) = sum(k=1, n, 1/k)*lcm([1..n]); \\ Michel Marcus, Apr 02 2018
    

Formula

a(n) = A001008(n)*A110566(n). - Arkadiusz Wesolowski, Mar 29 2012
a(n) = Sum_{k=1..n} lcm(1,2,...,n)/k. - Thomas Ordowski, Aug 07 2019

A074791 Numbers k such that k does not divide the denominator of the k-th harmonic number.

Original entry on oeis.org

6, 18, 20, 21, 33, 42, 54, 63, 66, 77, 100, 110, 120, 156, 162, 189, 198, 272, 294, 336, 342, 363, 377, 435, 486, 500, 506, 559, 567, 594, 600, 610, 629, 685, 703, 812, 847, 880, 924, 930, 957, 1067, 1166, 1210, 1243, 1247, 1287, 1320, 1332, 1458, 1590, 1640
Offset: 1

Views

Author

Benoit Cloitre, Sep 07 2002

Keywords

Comments

k such that A064169(k) is different from A027612(k).
Also k such that A096617(k) is different from A001008(k). - Alexander Adamchuk, Jun 26 2006
This sequence contains A036689(k) for all k > 1. - Wouter van Doorn, Nov 06 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[1700], Mod[ Denominator[ HarmonicNumber[ # ]], # ] != 0 &] (* Robert G. Wilson v, Sep 28 2005 *)
    seq = {}; s = 0; Do[s += 1/n; If[! Divisible[Denominator[s], n], AppendTo[seq, n]], {n, 1, 2000}]; seq (* Amiram Eldar, Dec 01 2020 *)

Formula

Is a(n) asymptotic to c*n^2 0.5
a(n) < 2*n^2*log(n)^2 for all n > 2. This follows from the fact that for all k > 1 there exists an n such that A036689(k) is equal to A074791(n). - Wouter van Doorn, Nov 06 2024

Extensions

Better description and more terms from Robert G. Wilson v, Sep 28 2005

A193758 Denominator of H(n)/H(n-1), where H(n) is the n-th harmonic number = Sum_{k=1..n} 1/k.

Original entry on oeis.org

2, 9, 22, 125, 137, 343, 726, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 271211719, 275295799, 55835135, 18858053, 439143531, 1332950097, 33695573875, 34052522467, 309561680403, 312536252003, 9146733078187, 9227046511387
Offset: 2

Author

Gary Detlefs, Aug 04 2011

Keywords

Comments

a(n) mod n^3 = 0 iff n is prime > 3. - Gary Detlefs, Jan 30 2013

Crossrefs

Numerators are in A096617.

Programs

  • Maple
    H:= n-> add(1/k, k=1..n): seq(denom(H(n)/H(n-1)), n=2..25);
  • Mathematica
    h[n_] := Sum[1/i, {i, n}]; Table[Denominator[h[n]/h[n - 1]], {n, 2, 50}] (* T. D. Noe, Aug 04 2011 *)
    Denominator[#[[2]]/#[[1]]]&/@Partition[HarmonicNumber[Range[30]],2,1] (* Harvey P. Dale, Jul 05 2015 *)
  • Python
    from fractions import Fraction
    def aupton(nn):
      Hnm1, alst = Fraction(1, 1), []
      for n in range(2, nn+1):
        Hn = Hnm1 + Fraction(1, n)
        alst.append((Hn/Hnm1).denominator)
        Hnm1 = Hn
      return alst
    print(aupton(30)) # Michael S. Branicky, Feb 09 2021

Formula

a(n) = denominator(H(n)/H(n-1)), where H(n) = Sum_{k=1..n} 1/k.
a(n) = numerator(n*H(n))-denominator(n*H(n)). - Gary Detlefs, Sep 05 2011

A120299 Largest prime factor of Stirling numbers of first kind s(n,2) = A000254(n).

Original entry on oeis.org

3, 11, 5, 137, 7, 11, 761, 7129, 61, 863, 509, 919, 1117, 41233, 8431, 1138979, 39541, 7440427, 11167027, 18858053, 227, 583859, 467183, 312408463, 34395742267, 215087, 375035183, 4990290163, 17783, 2667653736673, 535919, 199539368321, 15088528003, 137121586897, 9059
Offset: 2

Author

Alexander Adamchuk, Jul 11 2006

Keywords

Crossrefs

Programs

Formula

a(n) = Max[FactorInteger[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}]]].
a(n) = gpf(A096617(n)), where gpf = A006530 is the greatest prime factor, and A096617 is a "reduced" variant of A001008 and thus A000254. [Conjectured; true if this gpf is always > n.] - M. F. Hasler, Jul 04 2019

Extensions

More terms from M. F. Hasler, Jul 04 2019

A120308 Numerator((p-1)*H(p-1))/p^2 for p = prime(n) > 3, where H(k) is k-th harmonic number A001008(k)/A002805(k).

Original entry on oeis.org

1, 3, 61, 509, 8431, 118623, 36093, 375035183, 9682292227, 40030624861, 1236275063173, 46600968591317, 2690511212793403, 5006621632408586951, 73077117446662772669, 4062642402613316532391, 139715526178793824689891
Offset: 3

Author

Alexander Adamchuk, Jul 16 2006

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((NthPrime(n)-1)*HarmonicNumber(NthPrime(n)-1)/NthPrime(n)^2): n in [3..25]]; // G. C. Greubel, Sep 02 2018
  • Maple
    N:= 50: # to get the first N terms
    Primes:= select(isprime,[seq(2*i+1,i=2..(ithprime(N+2)-1)/2)]):
    H:= ListTools[PartialSums]([seq(1/i,i=1..Primes[-1]-1)]):
    seq(numer((p-1)*H[p-1])/p^2, p=Primes); # Robert Israel, Sep 09 2014
  • Mathematica
    Numerator[Table[(Prime[n]-1)*(Sum[(1/k), {k, 1, Prime[n]-1}]),{n,3,20}]]/Table[Prime[n]^2,{n,3,20}]
    Table[((p-1)HarmonicNumber[p-1])/p^2,{p,Prime[Range[2,20]]}]//Numerator (* Harvey P. Dale, May 19 2021 *)
  • PARI
    {a(n) = numerator((prime(n)-1)*sum(k=1,prime(n)-1, 1/k)/prime(n)^2)};
    for(n=3,25, print1(a(n), ", ")) \\ G. C. Greubel, Sep 02 2018
    

Formula

a(n) = numerator((prime(n)-1)*(Sum_{k=1..prime(n)-1} 1/k))/prime(n)^2 for n > 2.
a(n) = A096617(p-1)/p^2 for p = prime(n) > 3.
Showing 1-6 of 6 results.