A061002
As p runs through the primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k } / p^2.
Original entry on oeis.org
1, 1, 61, 509, 8431, 39541, 36093, 375035183, 9682292227, 40030624861, 1236275063173, 6657281227331, 2690511212793403, 5006621632408586951, 73077117446662772669, 4062642402613316532391, 46571842059597941563297, 8437878094593961096374353
Offset: 3
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 388 Problem 5.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 115.
-
List(List(Filtered([5..80],p->IsPrime(p)),i->Sum([1..i-1],k->1/k)/i^2),NumeratorRat); # Muniru A Asiru, Dec 02 2018
-
A061002:=proc(n) local p;
p:=ithprime(n);
(1/p^2)*numer(add(1/i,i=1..p-1));
end proc;
[seq(A061002(n),n=3..20)];
-
Table[Function[p, Numerator[Sum[1/k, {k, p - 1}]/p^2]]@ Prime@ n, {n, 3, 20}] (* Michael De Vlieger, Feb 04 2017 *)
-
a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k))/p^2; \\ Michel Marcus, Dec 03 2018
A096617
Numerator of n*HarmonicNumber(n).
Original entry on oeis.org
1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
Offset: 1
1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)
-
[Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
-
ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
-
Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *)
Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}] (* Jean-François Alcover, Feb 17 2014 *)
-
{h(n) = sum(k=1,n,1/k)};
for(n=1,50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
-
A=List(f=1); for(k=1,999, t=[A[k]*(k+1),f*=k]; t/=gcd(t); listput(A,t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019
A185399
As p runs through the primes, sequence gives denominator of Sum_{k=1..p-1} 1/k.
Original entry on oeis.org
1, 2, 12, 20, 2520, 27720, 720720, 4084080, 5173168, 80313433200, 2329089562800, 13127595717600, 485721041551200, 2844937529085600, 1345655451257488800, 3099044504245996706400, 54749786241679275146400, 3230237388259077233637600
Offset: 1
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.
Cf.
A001008,
A002805 (numerators and denominators of harmonic numbers).
-
[Denominator(HarmonicNumber(NthPrime(n)-1)): n in [1..40]]; // Vincenzo Librandi, Dec 05 2018
-
f2:=proc(n) local p;
p:=ithprime(n);
denom(add(1/i,i=1..p-1));
end proc;
[seq(f2(n),n=1..20)];
-
nn = 20; sm = 0; t = Table[sm = sm + 1/k; Denominator[sm], {k, Prime[nn]}]; Table[t[[p - 1]], {p, Prime[Range[nn]]}] (* T. D. Noe, Apr 23 2013 *)
-
a(n) = denominator(sum(k=1, prime(n)-1, 1/k)); \\ Michel Marcus, Dec 05 2018
A368810
a(n) = numerator of Sum_{i=1..n} Sum_{j=1..n} (1/i + 1/j).
Original entry on oeis.org
2, 6, 11, 50, 137, 147, 363, 1522, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 4873118, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387
Offset: 1
-
Numerator[Table[Sum[Sum[1/i + 1/j, {i, 1, n}], {j, 1, n}], {n, 1, 29}]]
-
from sympy import harmonic
def A368810(n): return ((n<<1)*harmonic(n)).p # Chai Wah Wu, Feb 04 2024
A379561
a(n) = A003418(n+1)*H(n), where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number.
Original entry on oeis.org
2, 9, 22, 125, 137, 1029, 2178, 6849, 7129, 81191, 83711, 1118273, 1145993, 1171733, 2391514, 41421503, 42142223, 813635157, 825887397, 837527025, 848612385, 19761458895, 19994251455, 101086721625, 102157567401, 309561680403, 312536252003, 9146733078187
Offset: 1
a(n)/A025558(n) = [ 2/1, 9/4, 22/9, 125/48, 137/50, 1029/360, 2178/735, ... ]
To evaluate the integral:
For n = 1: Integral_{x=0..1} Li_1(x^(1/2))/x^(1/2) dx = Integral_{x=0..1} -log(1-x^(1/2))/x^(1/2) dx = -2 * -(Sum_{x=1..oo} 1/(x*(x+1))) = -2 * -1 = 2.
For n = 2: Integral_{x=0..1} Li_1(x^(1/3))/x^(1/3) dx = Integral_{x=0..1} -log(1-x^(1/3))/x^(1/3) dx = -3 * -(Sum_{x=1..oo} 1/(x*(x+2))) = -3 * -((1/2)*(1+1/2)) = -3 * -3/4 = 9/4.
For n = 3: Integral_{x=0..1} Li_1(x^(1/4))/x^(1/4) dx = Integral_{x=0..1} -log(1-x^(1/4))/x^(1/4) dx = -4 * -(Sum_{x=1..oo} 1/(x*(x+3))) = -4 * -((1/3)*(1+1/2+1/3)) = -4 * -11/18 = 22/9.
Cf.
A193758 (very similar sequence).
-
a(n) = lcm(vector(n+1, i, i))*sum(i=1, n, 1/i); \\ Michel Marcus, Dec 28 2024
Showing 1-5 of 5 results.
Comments