cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A127042 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 29, 31, 37, 41, 97, 127, 131, 211, 223, 227, 229, 233, 239, 241, 439, 443, 449, 457, 461, 463, 727, 733, 739, 743, 751, 757, 761, 769, 773, 863, 877, 881, 883, 887, 967, 971, 977, 983, 991, 997, 1009, 1013, 1187, 1193, 1201, 1901, 1907, 1913, 1931, 1933
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], AppendTo[a, Prime[x]]], {x, 1, 50}]; a

Extensions

More terms from Franklin T. Adams-Watters, Jan 21 2012

A127046 Primes p such that denominator of Sum_{k=1..p-1} 1/k^3 is a cube.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 83, 89, 97, 137, 139, 293, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^3; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/3)], AppendTo[a, i + 1]]]]; a]; d[2000]
    Select[Prime[Range[200]], IntegerQ[Surd[Denominator[Sum[1/k^3, {k,#-1}]], 3]]&] (* Harvey P. Dale, Mar 13 2013 *)

A127047 Primes p such that denominator of Sum_{k=1..p-1} 1/k^4 is a fourth power.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 53, 67, 71, 73, 97, 101, 103, 107, 109, 127, 131, 197, 199, 211, 223, 227, 229, 233, 293, 367, 373, 379, 383, 389, 397, 401, 439, 443, 449, 457, 461, 463, 557, 563, 569, 571, 577, 877, 881, 883, 967, 971, 977, 983, 991, 997
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      S:= S + 1/k^4;
      if isprime(k+1) and surd(denom(S),4)::integer then R:= R,k+1; count:= count+1 fi
    od:
    R; # Robert Israel, Oct 25 2019
  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^4; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/4)], AppendTo[a, i + 1]]]]; a]; d[10000]
    Select[Flatten[Position[Denominator[Accumulate[1/Range[1000]^4]],?(IntegerQ[ Surd[ #,4]]&)]],PrimeQ] (* _Harvey P. Dale, Feb 08 2015 *)

A127048 Primes p such that denominator of Sum_{k=1..p-1} 1/k^5 is a fifth power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 37, 41, 53, 83, 127, 131, 137, 139, 149, 151, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 853, 857, 859, 863, 877, 881, 883, 887, 929, 967, 1091, 1093, 1097, 1103, 1109, 1151
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^5; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/5)], AppendTo[a, i + 1]]]]; a]; d[2000]

A127043 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is not a square.

Original entry on oeis.org

11, 13, 23, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      S:= S + 1/k^2;
      if isprime(k+1) and not issqr(denom(S)) then
           R:= R,k+1; count:= count+1;
      fi
    od:
    R; # Robert Israel, Oct 25 2019
  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], 1,AppendTo[a, Prime[x]]], {x, 1, 50}]; a

Extensions

More terms from Robert Israel, Oct 25 2019

A127051 Primes p such that denominator of Sum_{k=1..p-1} 1/k^7 is a seventh power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 83, 131, 251, 257, 263, 269, 271, 293, 419, 421, 479, 1163, 1171, 1181, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 3137, 3163, 3167, 3169, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^7; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/7)], AppendTo[a, i + 1]]]]; a]; d[2000]

A127044 Squares of denominators of Sum_{k=1..p-1} 1/k^2 for p in A127042.

Original entry on oeis.org

1, 2, 12, 60, 720720, 12252240, 80313433200, 2329089562800, 144403552893600, 5342931457063200, 718766754945489455304472257065075294400, 52573842877942565273243107104095419458814459401768000
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], AppendTo[a, Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]]], {x, 1, 50}]; a

A076637 Numerators of harmonic numbers when these numerators are divisible by squares of primes >= 5 in the case of Wolstenholme's Theorem.

Original entry on oeis.org

25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789, 15117092380124150817026911
Offset: 1

Views

Author

Michael Gilleland (megilleland(AT)yahoo.com), Oct 23 2002

Keywords

Comments

By Wolstenholme's Theorem, if p prime >= 5, the numerator of the harmonic number H_{p-1} is always divisible by p^2. The obtained quotients are in A061002. - Bernard Schott, Dec 02 2018
The numbers 363, numerator of H_7 and 9227046511387, numerator of H_{29}, which have been found by Amiram Eldar and Michel Marcus, are also divisible by prime squares, respectively by 11^2 and 43^2, but not in the case of Wolstenholme's Theorem. So, a new sequence A322434 is created with all the numerators of Harmonic numbers which are divisible by any prime square >= 5. - Bernard Schott, Dec 08 2018

Examples

			25 is a term because the numerator of the harmonic number H_4 = 1 + 1/2+ 1/3 + 1/4 = 25/12 is divisible by the square of 5;
49 is a term because the numerator of the harmonic number H_6 = 1 + 1/2+ 1/3 + 1/4 + 1/5 + 1/6 = 49/20 is divisible by the square of 7.
		

Crossrefs

Programs

  • Mathematica
    a[p_] := Numerator[HarmonicNumber[p - 1]]; a /@ Prime@Range[3, 20] (* Amiram Eldar, Dec 08 2018 *)

Extensions

More terms from Amiram Eldar, Dec 04 2018

A127049 Primes p such that denominator of Sum_{k=1..p-1} 1/k^6 is a sixth power.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 41, 43, 47, 97, 127, 191, 193, 197, 199, 211, 223, 227, 229, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 991, 997, 1009, 1013, 1187, 1193, 1201, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3613, 3617, 3623, 3631
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007, Jan 04 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^6; If[PrimeQ[i + 1] && IntegerQ[(Denominator[su])^(1/6)], AppendTo[a, i + 1]]]; a]; d[2000]
    Select[Prime[Range[600]],IntegerQ[Surd[Denominator[Sum[1/k^6,{k,#-1}]], 6]]&] (* Harvey P. Dale, Aug 04 2019 *)

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A185399 As p runs through the primes, sequence gives denominator of Sum_{k=1..p-1} 1/k.

Original entry on oeis.org

1, 2, 12, 20, 2520, 27720, 720720, 4084080, 5173168, 80313433200, 2329089562800, 13127595717600, 485721041551200, 2844937529085600, 1345655451257488800, 3099044504245996706400, 54749786241679275146400, 3230237388259077233637600
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Cf. A001008, A002805 (numerators and denominators of harmonic numbers).

Programs

  • Magma
    [Denominator(HarmonicNumber(NthPrime(n)-1)): n in [1..40]]; // Vincenzo Librandi, Dec 05 2018
  • Maple
    f2:=proc(n) local p;
    p:=ithprime(n);
    denom(add(1/i,i=1..p-1));
    end proc;
    [seq(f2(n),n=1..20)];
  • Mathematica
    nn = 20; sm = 0; t = Table[sm = sm + 1/k; Denominator[sm], {k, Prime[nn]}]; Table[t[[p - 1]], {p, Prime[Range[nn]]}] (* T. D. Noe, Apr 23 2013 *)
  • PARI
    a(n) = denominator(sum(k=1, prime(n)-1, 1/k)); \\ Michel Marcus, Dec 05 2018
    

Formula

a(n) = denominator(sum((k+1)/(p-k-1), k=0..p-2)), where p = the n-th prime. - Gary Detlefs, Jan 12 2012
a(n) = numerator(H(p)/H(p-1)) - denominator(H(p)/H(p-1)), where p is the n-th prime and H(n) is the n-th harmonic number. - Gary Detlefs, Apr 21 2013
Showing 1-10 of 24 results. Next