cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A127044 Squares of denominators of Sum_{k=1..p-1} 1/k^2 for p in A127042.

Original entry on oeis.org

1, 2, 12, 60, 720720, 12252240, 80313433200, 2329089562800, 144403552893600, 5342931457063200, 718766754945489455304472257065075294400, 52573842877942565273243107104095419458814459401768000
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], AppendTo[a, Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]]], {x, 1, 50}]; a

A127046 Primes p such that denominator of Sum_{k=1..p-1} 1/k^3 is a cube.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 83, 89, 97, 137, 139, 293, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^3; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/3)], AppendTo[a, i + 1]]]]; a]; d[2000]
    Select[Prime[Range[200]], IntegerQ[Surd[Denominator[Sum[1/k^3, {k,#-1}]], 3]]&] (* Harvey P. Dale, Mar 13 2013 *)

A127047 Primes p such that denominator of Sum_{k=1..p-1} 1/k^4 is a fourth power.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 53, 67, 71, 73, 97, 101, 103, 107, 109, 127, 131, 197, 199, 211, 223, 227, 229, 233, 293, 367, 373, 379, 383, 389, 397, 401, 439, 443, 449, 457, 461, 463, 557, 563, 569, 571, 577, 877, 881, 883, 967, 971, 977, 983, 991, 997
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      S:= S + 1/k^4;
      if isprime(k+1) and surd(denom(S),4)::integer then R:= R,k+1; count:= count+1 fi
    od:
    R; # Robert Israel, Oct 25 2019
  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^4; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/4)], AppendTo[a, i + 1]]]]; a]; d[10000]
    Select[Flatten[Position[Denominator[Accumulate[1/Range[1000]^4]],?(IntegerQ[ Surd[ #,4]]&)]],PrimeQ] (* _Harvey P. Dale, Feb 08 2015 *)

A127048 Primes p such that denominator of Sum_{k=1..p-1} 1/k^5 is a fifth power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 37, 41, 53, 83, 127, 131, 137, 139, 149, 151, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 853, 857, 859, 863, 877, 881, 883, 887, 929, 967, 1091, 1093, 1097, 1103, 1109, 1151
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^5; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/5)], AppendTo[a, i + 1]]]]; a]; d[2000]

A127043 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is not a square.

Original entry on oeis.org

11, 13, 23, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      S:= S + 1/k^2;
      if isprime(k+1) and not issqr(denom(S)) then
           R:= R,k+1; count:= count+1;
      fi
    od:
    R; # Robert Israel, Oct 25 2019
  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], 1,AppendTo[a, Prime[x]]], {x, 1, 50}]; a

Extensions

More terms from Robert Israel, Oct 25 2019

A127051 Primes p such that denominator of Sum_{k=1..p-1} 1/k^7 is a seventh power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 83, 131, 251, 257, 263, 269, 271, 293, 419, 421, 479, 1163, 1171, 1181, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 3137, 3163, 3167, 3169, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^7; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/7)], AppendTo[a, i + 1]]]]; a]; d[2000]

A127049 Primes p such that denominator of Sum_{k=1..p-1} 1/k^6 is a sixth power.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 41, 43, 47, 97, 127, 191, 193, 197, 199, 211, 223, 227, 229, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 991, 997, 1009, 1013, 1187, 1193, 1201, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3613, 3617, 3623, 3631
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007, Jan 04 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^6; If[PrimeQ[i + 1] && IntegerQ[(Denominator[su])^(1/6)], AppendTo[a, i + 1]]]; a]; d[2000]
    Select[Prime[Range[600]],IntegerQ[Surd[Denominator[Sum[1/k^6,{k,#-1}]], 6]]&] (* Harvey P. Dale, Aug 04 2019 *)

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A127061 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube.

Original entry on oeis.org

2, 3, 5, 17, 29, 31, 37, 41, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4283, 4289, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Crossrefs

Programs

Formula

Intersection of A127042 and A127046. - Michel Marcus, Nov 05 2013

Extensions

More terms from Max Alekseyev, Feb 08 2007
Missing terms in the [9461, 9587] range inserted by Michel Marcus, Nov 05 2013

A127045 Primes p such that denominator of Sum_{k=1..p-1} 1/k^9 is a 9th power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 97, 127, 131, 251, 257, 263, 293, 431, 433, 439, 443, 449, 457, 461, 463, 467, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3797, 3803, 3821, 3823, 3833, 3907, 3911, 3917
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^9; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/9)], AppendTo[a, i + 1]]]]; a] d[2000]
    Select[Flatten[Position[Denominator[Accumulate[1/Range[4000]^9]],?(IntegerQ[ Surd[ #,9]]&)]]+1,PrimeQ] (* _Harvey P. Dale, Aug 06 2022 *)

A127052 Primes p such that denominator of Sum_{k=1..p-1} 1/k^8 is an eighth power.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 67, 71, 73, 97, 101, 127, 131, 197, 199, 211, 251, 367, 373, 379, 773, 787, 797, 809, 811, 1373, 1433, 1439, 2027, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^8; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/8)], AppendTo[a, i + 1]]]]; a]; d[2000]
Showing 1-10 of 12 results. Next