A127062 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube and denominator Sum_{k=1..p-1} 1/k^4 is a fourth power.
2, 3, 5, 17, 29, 31, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 117659, 117671, 117673, 117679, 117701, 117703, 117709, 117721, 117727, 117731, 117751, 117757, 117763, 117773
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
pdenQ[n_]:=Module[{c=Denominator[Table[Sum[1/k^i,{k,n-1}],{i,2,4}]]}, AllTrue[{ Surd[c[[1]],2], Surd[c[[2]],3],Surd[c[[3]],4]},IntegerQ]]; Select[Prime[Range[12000]],pdenQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 06 2015 *)
-
PARI
lista(nn) = {forprime(p = 2, nn, if (issquare(denominator(sum(k=1, p-1, 1/k^2))) && ispower(denominator(sum(k=1, p-1, 1/k^3)),3) && ispower(denominator(sum(k=1, p-1, 1/k^4)),4), print1(p, ", ")););} \\ Michel Marcus, Nov 05 2013
Formula
Extensions
More terms from Max Alekseyev, Feb 08 2007
Comments