cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A061002 As p runs through the primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k } / p^2.

Original entry on oeis.org

1, 1, 61, 509, 8431, 39541, 36093, 375035183, 9682292227, 40030624861, 1236275063173, 6657281227331, 2690511212793403, 5006621632408586951, 73077117446662772669, 4062642402613316532391, 46571842059597941563297, 8437878094593961096374353
Offset: 3

Views

Author

N. J. A. Sloane, May 15 2001

Keywords

Comments

This is an integer by a theorem of Waring and Wolstenholme.
Conjecture: If p is the n-th prime and H(n) is the n-th harmonic number, then denominator(H(p)/H(p-1))/numerator(H(p-1)/p^2) = p^3. A193758(p)/a(n) = p^3, p > 3. - Gary Detlefs, Feb 20 2013
The sequence which gives the numerators of H_{p-1} = Sum_{k=1..p-1} 1/k for p prime >= 5 is A076637. - Bernard Schott, Dec 02 2018

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 388 Problem 5.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 115.

Crossrefs

Programs

  • GAP
    List(List(Filtered([5..80],p->IsPrime(p)),i->Sum([1..i-1],k->1/k)/i^2),NumeratorRat); # Muniru A Asiru, Dec 02 2018
    
  • Maple
    A061002:=proc(n) local p;
      p:=ithprime(n);
      (1/p^2)*numer(add(1/i,i=1..p-1));
    end proc;
    [seq(A061002(n),n=3..20)];
  • Mathematica
    Table[Function[p, Numerator[Sum[1/k, {k, p - 1}]/p^2]]@ Prime@ n, {n, 3, 20}] (* Michael De Vlieger, Feb 04 2017 *)
  • PARI
    a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k))/p^2; \\ Michel Marcus, Dec 03 2018

Formula

a(n) = A001008(p-1)/p^2, p=A000040(n). - R. J. Mathar, Jan 09 2017
a(n) = A120285(n)/A001248(n). - R. J. Mathar, Jan 09 2017

A341432 a(n) is the denominator of the asymptotic density of numbers divisible by their last digit in base n.

Original entry on oeis.org

2, 2, 12, 12, 60, 20, 840, 840, 2520, 2520, 27720, 27720, 360360, 360360, 720720, 720720, 12252240, 4084080, 232792560, 77597520, 33256080, 5173168, 5354228880, 356948592, 3824449200, 26771144400, 11473347600, 80313433200, 332727080400, 2329089562800, 144403552893600
Offset: 2

Views

Author

Amiram Eldar, Feb 11 2021

Keywords

Comments

a(n) divides A003418(n), and a(n) = A003418(n) for n = 1, 2, 4, 6, 8, 10, 12, ...

Examples

			For n=2, the numbers divisible by their last binary digit are the odd numbers (A005408) whose density is 1/2, therefore a(2) = 2.
For n=3, the numbers divisible by their last digit in base 3 are the numbers that are congruent to {1, 2, 4} mod 6 (A047236) whose density is 1/2, therefore a(3) = 2.
For n=10, the numbers divisible by their last digit in base 10 are A034709 whose density is 1177/2520, therefore a(10) = 2520.
		

Crossrefs

Cf. A003418, A005408, A034709, A047236, A185399, A341431 (numerators).

Programs

  • Mathematica
    a[n_] := Denominator[Sum[GCD[k, n]/k, {k, 1, n - 1}]/n]; Array[a, 32, 2]

Formula

A341431(n)/a(n) = (1/n) * Sum_{k=1..n-1} gcd(k, n)/k. [corrected by Amiram Eldar, Nov 16 2022]
a(prime(n)) = A185399(n), for n > 1.

A120285 Numerator of harmonic number H(p-1) = Sum_{k=1..p-1} 1/k for prime p.

Original entry on oeis.org

1, 3, 25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789
Offset: 1

Views

Author

Alexander Adamchuk, Jul 07 2006

Keywords

Comments

Prime(n)^2 divides a(n) for n>2.

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Programs

  • Maple
    f3:=proc(n) local p;
    p:=ithprime(n);
    numer(add(1/i,i=1..p-1));
    end proc;
    [seq(f3(n),n=1..20)];
  • Mathematica
    Numerator[Table[Sum[1/k,{k,1,Prime[n]-1}],{n,1,20}]]
    Table[HarmonicNumber[p],{p,Prime[Range[20]]-1}]//Numerator (* Harvey P. Dale, May 18 2023 *)
  • PARI
    a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k)); \\ Michel Marcus, Dec 25 2018

Formula

a(n) = numerator(Sum_{k=1..prime(n)-1} 1/k).
a(n) = A001008(prime(n)-1).
a(n) = A061002(n)*prime(n)^2 for n > 2.

A076638 Denominators of harmonic numbers when the numerators are divisible by squares of primes >= 5 in the case of Wolstenholme's Theorem.

Original entry on oeis.org

12, 20, 2520, 27720, 720720, 4084080, 5173168, 80313433200, 2329089562800, 13127595717600, 485721041551200, 2844937529085600, 1345655451257488800, 3099044504245996706400, 54749786241679275146400, 3230237388259077233637600
Offset: 1

Views

Author

Michael Gilleland (megilleland(AT)yahoo.com), Oct 23 2002

Keywords

Comments

From Bernard Schott, Dec 28 2018: (Start)
By Wolstenholme's Theorem, if p prime >= 5, the numerator of the harmonic number H_{p-1} is always divisible by p^2. The obtained quotients are in A061002.
The numerators of H_7 and H_{29} are also divisible by prime squares, respectively by 11^2 and 43^2, but not in the case of Wolstenholme's theorem, so the denominators of H_7 and H_{29} are not in this sequence here. (End)

Examples

			a(1)=12 because the numerator of H_4 = 25/12 is divisible by the square of 5;
a(2)=20 because the numerator of H_6 = 49/20 is divisible by the square of 7.
		

Crossrefs

Programs

  • Mathematica
    a[p_] := Denominator[HarmonicNumber[p - 1]]; a /@ Prime@Range[3, 20] (* Amiram Eldar, Dec 28 2018 *)

Extensions

More terms added by Amiram Eldar, Dec 04 2018
Showing 1-4 of 4 results.