cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A027451 First diagonal of A027447.

Original entry on oeis.org

1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, 6350400, 5336100, 768398400, 662547600, 577152576, 2029052025, 519437318400, 463325262400, 150117385017600, 135480939978384, 122885206329600, 111967718990400, 54192375991353600, 49770428644836900
Offset: 1

Views

Author

Keywords

Comments

Equals the denominators of MN(z;n)/(n!)^2 for n =>1, see A162990. - Johannes W. Meijer, Jul 21 2009
It appears that a(n) = denominator of n^2*sum(1/k^2,k=1..n). - Gary Detlefs, May 29 2010

Crossrefs

From Johannes W. Meijer, Jul 21 2009: (Start)
Equals A002944(n)^2.
Equals A001044(n-1)/A025527(n)^2.
(End)

Programs

Formula

Numerators of sequence a[ n, n ] in (a[ i, j ])^3 where a[ i, j ] = 1/i if j<=i, 0 if j>i.
a(n) = (lcm($1..n)/n)^2. - Johannes W. Meijer, Jul 21 2009

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027460 Second column of A027447.

Original entry on oeis.org

1, 19, 115, 3799, 4669, 268921, 1227199, 12335311, 13560283, 1781891563, 1916566873, 345677548297, 366562289317, 386631866845, 1623817435135, 490825547301775, 511634386192615, 191966753701218895, 199005637912597915, 205832222367859915, 212460475248691315
Offset: 2

Views

Author

Keywords

Formula

Numerators of sequence a(2, n) in (a(i, j))^3 where a(i, j) = 1/i if j <= i, 0 if j > i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A329108 First column of A027447.

Original entry on oeis.org

1, 7, 85, 415, 12019, 13489, 726301, 3144919, 30300391, 32160403, 4102360483, 4301068993, 758647585777, 788807993197, 817534859365, 3379894237615, 1007162177631295, 1036310871245335, 384227195120585215, 393975698131531915, 403382871919715515
Offset: 1

Views

Author

Sean A. Irvine, Nov 04 2019

Keywords

Comments

This sequences was originally A027459, but differs from the current version of A027459 for n >= 14. This difference arises because the rational numbers in the matrix defining A027447 (and hence this sequence) are not reduced to the lowest common denominator, whereas the values in A027459 are.

Crossrefs

A027452 Second diagonal of A027447.

Original entry on oeis.org

7, 19, 37, 549, 364, 12700, 38025, 265825, 212464, 21019824, 17507700, 2502630900, 2144458800, 1858077936, 6501984489, 1657735504425, 1473342270400, 475835044484800, 428209840762704, 387395612954064, 352152440452800, 170078965146417600, 155897164961237700
Offset: 2

Views

Author

Keywords

Formula

Numerators of sequence a(n, n-1) in (a(i, j))^3 where a(i, j) = 1/i if j <= i, 0 if j > i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027453 Third diagonal of A027447.

Original entry on oeis.org

85, 115, 1489, 919, 30676, 89125, 609625, 479269, 46805584, 38580444, 5467738500, 4651663500, 4005934416, 13944602529, 3539108614041, 3132881376625, 1008229438216000, 904461877983664, 815945004944784, 739827337966704, 356490237457224000, 326078767183396500
Offset: 3

Views

Author

Keywords

Formula

Numerators of sequence a(n, n-2) in (a(i, j))^3 where a(i, j) = 1/i if j <= i, 0 if j > i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027461 Third column of A027447.

Original entry on oeis.org

4, 37, 1489, 2059, 128431, 621139, 6527971, 7435423, 1005856303, 1108515013, 204122194357, 220369102177, 236110035385, 1005497693095, 307715924645815, 324354836175055, 122932720987212535, 128616795798807715, 134153085587608915, 139549693559545915
Offset: 3

Views

Author

Keywords

Formula

Numerators of sequence a(3, n) in (a(i, j))^3 where a(i, j) = 1/i if j <= i, 0 if j > i.

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A027448 Triangle read by rows: 4th power of the lower triangular mean matrix (M[i,j] = 1/i for i <= j).

Original entry on oeis.org

1, 15, 1, 575, 65, 8, 5845, 865, 175, 27, 874853, 153713, 39743, 9963, 1728, 1009743, 200403, 60333, 19153, 5368, 1000, 389919909, 84873489, 28400079, 10419739, 3681784, 1105000, 216000, 3449575767, 807843807, 292420227
Offset: 1

Views

Author

Keywords

Examples

			Table starts:
          1
         15           1
        575          65           8
       5845         865         175          27
     874853      153713       39743        9963        1728
    1009743      200403       60333       19153        5368        1000
		

Crossrefs

Cf. A027446 (square of M), A027447 (cube of M).

Programs

  • Maple
    Rows:= 10:
    M:= Matrix(Rows,Rows,(i,j) -> `if`(i>=j,1/i,0)):
    B:= M^4:
    L:= [seq(ilcm(seq(denom(B[i,j]),j=1..i)),i=1..Rows)]:
    seq(seq(B[i,j]*L[i],j=1..i),i=1..Rows); # Robert Israel, Oct 05 2019
  • Mathematica
    rows = 8; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m4 = m.m.m.m; Table[ fracs = m4[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    A027448_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^4); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

Let M be the lower triangular matrix with entries M[i,j] = 1/i for 1<=j<=i, and B = M^4. Then a(i,j) = B(i,j)*lcm(denom(B(i,1)),...,denom(B(i,i))). - Robert Israel, Oct 05 2019
That is, the fractions in M^4 are written using the least common denominator before taking the numerators. - M. F. Hasler, Nov 05 2019

Extensions

Edited by Robert Israel, Oct 05 2019

A027446 Triangle read by rows: square of the lower triangular mean matrix.

Original entry on oeis.org

1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1

Views

Author

Keywords

Comments

Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by M. F. Hasler, Nov 05 2019]

Examples

			Triangle starts
     1
     3,    1
    11,    5,    2
    25,   13,    7,    3
   137,   77,   47,   27,   12
   147,   87,   57,   37,   22,   10
  1089,  669,  459,  319,  214,  130,  60
  2283, 1443, 1023,  743,  533,  365, 225, 105
  7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
  ... - _Joerg Arndt_, Mar 29 2013
		

Crossrefs

The row sums give A081528(n), n>=1.
The column sequences give A025529, A027457, A027458 for j=1..3.
The diagonal sequences give A002944, A027449, A027450.

Programs

  • Mathematica
    rows = 10;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
  • PARI
    A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j).
a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise.

Extensions

Edited by M. F. Hasler, Nov 05 2019

A027459 Numerator of Sum_{k=1..n} H(k)/k, where H(k) is k-th harmonic number.

Original entry on oeis.org

1, 7, 85, 415, 12019, 13489, 726301, 3144919, 30300391, 32160403, 4102360483, 4301068993, 758647585777, 112686856171, 3336876977, 96568406789, 28776062218037, 29608882035581, 1568274265798307, 11256448518043769
Offset: 1

Views

Author

Keywords

Comments

Originally defined as the first column of A027447, but now contains numerator in reduced form (cf. A329108). - Sean A. Irvine, Nov 04 2019
Numerators of the binomial transform of (-1)^n/(n+1)^3. The matrix a[i,j] below is the product of the binomial matrix and the matrix with general term binomial(i,j)(-1)^(i-j)/(i+1)^3. - Paul Barry, Aug 06 2004
From Alexander Adamchuk, Jan 02 2007 [edited by Jon E. Schoenfield, Mar 08 2015]: (Start)
Also a(n) is a numerator of S(n) = Sum_{k=1..n} H(k)/k, where H(k) is the k-th harmonic number, H(k) = Sum_{i=1..k} 1/i = A001008(k)/A002805(k).
S(n) = Sum_{k=1..n} H(k)/k = 1/2*(H(n)^2 + H(n,2)), where H(n,2) = Sum_{i=1..n} 1/i^2 = A007406(n)/A007407(n).
p divides a(p-1) and a(p-2) for prime p>3. a(n) is prime for n = {2, 7, 26, 31, 43, 53, 68, 80, 91, 123, 175, 236, 458, ...}. (End)
The n-fold repeated integral of (1/2)*log(x)^2 (all improper integrals with the lower limits of integration equal to 0) = x^n/n! * ( (1/2)*log(x)^2 - H(n)*log(x) + Sum_{k = 1..n} H(k)/k ). - Peter Bala, Feb 17 2022

Examples

			(a[ i,j ])^3 = MATRIX([[1, 0, 0, 0, 0], [7/8, 1/8, 0, 0, 0], [85/108, 19/108, 1/27, 0, 0], [415/576, 115/576, 37/576, 1/64, 0], [12019/18000, 3799/18000, 1489/18000, 61/2000, 1/125]]), n = 5.
		

Crossrefs

Programs

  • Magma
    [Numerator(&+[HarmonicNumber(k)/k:k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Nov 05 2019
  • Mathematica
    Table[Numerator[Sum[Sum[1/i,{i,1,k}]/k,{k,1,n}]],{n,1,30}] (* Alexander Adamchuk, Jan 02 2007 *)
    With[{nn=20},Accumulate[HarmonicNumber[Range[nn]]/Range[nn]]]//Numerator (* Harvey P. Dale, Feb 26 2023 *)

Formula

Numerators of sequence a(1, n) in (a(i, j))^3 where a(i, j) = 1/i if j <= i, 0 if j > i.
Numerators of (Wolstenholme(n, 1)^2 + Wolstenholme(n, 2))/(2*n)= ((gamma+Psi(n+1))^2 + Pi^2/6 - Psi(1, n+1))/(2*n), where Wolstenholme(n, m) = Sum_{i=1..n} 1/i^m. - Vladeta Jovovic, Aug 09 2002
a(n) = numerator(Sum_{k=1..n} ((Sum_{i=1..k} 1/i)/k)). - Alexander Adamchuk, Jan 02 2007

Extensions

Corrected by Vladeta Jovovic, Aug 09 2002

A119932 Triangle of denominators of the cube of a certain lower triangular matrix.

Original entry on oeis.org

1, 8, 8, 108, 108, 27, 576, 576, 576, 64, 18000, 18000, 18000, 2000, 125, 21600, 21600, 21600, 21600, 5400, 216, 1234800, 1234800, 1234800, 1234800, 308700, 12348, 343, 5644800, 5644800, 5644800, 5644800
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The triangle of the corresponding numerators is A119935.
See a comment under A119935 on the relation to the triangle A027447.

Crossrefs

a(i, j)=1/A002024(i, j), i>=1, j<=i.
Row sums give A119933. Row sums of the triangle of rationals are identical 1.

Formula

a(i,j)= denominator(r(i,j)) with r(i,j):=(A^3)[i,j], where the lower triangular matrix A has elements a[i,j] = 1/i if j<=i, 0 if j>i.
Showing 1-10 of 13 results. Next