Original entry on oeis.org
1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, 6350400, 5336100, 768398400, 662547600, 577152576, 2029052025, 519437318400, 463325262400, 150117385017600, 135480939978384, 122885206329600, 111967718990400, 54192375991353600, 49770428644836900
Offset: 1
Original entry on oeis.org
1, 19, 115, 3799, 4669, 268921, 1227199, 12335311, 13560283, 1781891563, 1916566873, 345677548297, 366562289317, 386631866845, 1623817435135, 490825547301775, 511634386192615, 191966753701218895, 199005637912597915, 205832222367859915, 212460475248691315
Offset: 2
Original entry on oeis.org
1, 7, 85, 415, 12019, 13489, 726301, 3144919, 30300391, 32160403, 4102360483, 4301068993, 758647585777, 788807993197, 817534859365, 3379894237615, 1007162177631295, 1036310871245335, 384227195120585215, 393975698131531915, 403382871919715515
Offset: 1
Original entry on oeis.org
7, 19, 37, 549, 364, 12700, 38025, 265825, 212464, 21019824, 17507700, 2502630900, 2144458800, 1858077936, 6501984489, 1657735504425, 1473342270400, 475835044484800, 428209840762704, 387395612954064, 352152440452800, 170078965146417600, 155897164961237700
Offset: 2
Original entry on oeis.org
85, 115, 1489, 919, 30676, 89125, 609625, 479269, 46805584, 38580444, 5467738500, 4651663500, 4005934416, 13944602529, 3539108614041, 3132881376625, 1008229438216000, 904461877983664, 815945004944784, 739827337966704, 356490237457224000, 326078767183396500
Offset: 3
Original entry on oeis.org
4, 37, 1489, 2059, 128431, 621139, 6527971, 7435423, 1005856303, 1108515013, 204122194357, 220369102177, 236110035385, 1005497693095, 307715924645815, 324354836175055, 122932720987212535, 128616795798807715, 134153085587608915, 139549693559545915
Offset: 3
A027448
Triangle read by rows: 4th power of the lower triangular mean matrix (M[i,j] = 1/i for i <= j).
Original entry on oeis.org
1, 15, 1, 575, 65, 8, 5845, 865, 175, 27, 874853, 153713, 39743, 9963, 1728, 1009743, 200403, 60333, 19153, 5368, 1000, 389919909, 84873489, 28400079, 10419739, 3681784, 1105000, 216000, 3449575767, 807843807, 292420227
Offset: 1
Table starts:
1
15 1
575 65 8
5845 865 175 27
874853 153713 39743 9963 1728
1009743 200403 60333 19153 5368 1000
-
Rows:= 10:
M:= Matrix(Rows,Rows,(i,j) -> `if`(i>=j,1/i,0)):
B:= M^4:
L:= [seq(ilcm(seq(denom(B[i,j]),j=1..i)),i=1..Rows)]:
seq(seq(B[i,j]*L[i],j=1..i),i=1..Rows); # Robert Israel, Oct 05 2019
-
rows = 8; m = Table[ If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}]; m4 = m.m.m.m; Table[ fracs = m4[[i]]; nums = fracs // Numerator; dens = fracs // Denominator; lcm = LCM @@ dens; Table[ nums[[j]]*lcm/dens[[j]], {j, 1, i}], {i, 1, rows}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
-
A027448_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^4); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019
A027446
Triangle read by rows: square of the lower triangular mean matrix.
Original entry on oeis.org
1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1
Triangle starts
1
3, 1
11, 5, 2
25, 13, 7, 3
137, 77, 47, 27, 12
147, 87, 57, 37, 22, 10
1089, 669, 459, 319, 214, 130, 60
2283, 1443, 1023, 743, 533, 365, 225, 105
7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
... - _Joerg Arndt_, Mar 29 2013
The row sums give
A081528(n), n>=1.
-
rows = 10;
M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
-
A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019
A027459
Numerator of Sum_{k=1..n} H(k)/k, where H(k) is k-th harmonic number.
Original entry on oeis.org
1, 7, 85, 415, 12019, 13489, 726301, 3144919, 30300391, 32160403, 4102360483, 4301068993, 758647585777, 112686856171, 3336876977, 96568406789, 28776062218037, 29608882035581, 1568274265798307, 11256448518043769
Offset: 1
(a[ i,j ])^3 = MATRIX([[1, 0, 0, 0, 0], [7/8, 1/8, 0, 0, 0], [85/108, 19/108, 1/27, 0, 0], [415/576, 115/576, 37/576, 1/64, 0], [12019/18000, 3799/18000, 1489/18000, 61/2000, 1/125]]), n = 5.
-
[Numerator(&+[HarmonicNumber(k)/k:k in [1..n]]):n in [1..20]]; // Marius A. Burtea, Nov 05 2019
-
Table[Numerator[Sum[Sum[1/i,{i,1,k}]/k,{k,1,n}]],{n,1,30}] (* Alexander Adamchuk, Jan 02 2007 *)
With[{nn=20},Accumulate[HarmonicNumber[Range[nn]]/Range[nn]]]//Numerator (* Harvey P. Dale, Feb 26 2023 *)
A119932
Triangle of denominators of the cube of a certain lower triangular matrix.
Original entry on oeis.org
1, 8, 8, 108, 108, 27, 576, 576, 576, 64, 18000, 18000, 18000, 2000, 125, 21600, 21600, 21600, 21600, 5400, 216, 1234800, 1234800, 1234800, 1234800, 308700, 12348, 343, 5644800, 5644800, 5644800, 5644800
Offset: 1
a(i, j)=1/
A002024(i, j), i>=1, j<=i.
Row sums give
A119933. Row sums of the triangle of rationals are identical 1.
Showing 1-10 of 13 results.
Comments