cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A189383 a(n) = n + [n*s/r] + [n*t/r]; r=1, s=1/sqrt(2), t=1/sqrt(3).

Original entry on oeis.org

1, 4, 6, 8, 10, 13, 15, 17, 20, 22, 24, 26, 29, 31, 33, 36, 38, 40, 42, 45, 47, 49, 52, 53, 56, 59, 61, 63, 65, 68, 69, 72, 75, 77, 79, 81, 84, 85, 88, 91, 92, 95, 97, 100, 101, 104, 107, 108, 111, 113, 116, 118, 120, 123, 124, 127, 129, 132, 134, 136, 139, 140, 143, 145, 147, 150, 152, 155, 156, 159, 161, 163, 166, 168, 171, 172, 175, 178, 179, 182, 184, 186, 188, 191
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2011

Keywords

Comments

This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n) = n + [n*s/r] + [n*t/r],
b(n) = n + [n*r/s] + [n*t/s],
c(n) = n + [n*r/t] + [n*s/t], where []=floor.
Taking r=1, s=1/sqrt(2), t=1/sqrt(3) gives

Crossrefs

Programs

  • Mathematica
    r=1; s=2^(-1/2); t=3^(-1/2);
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t]
    Table[a[n], {n, 1, 120}]  (*A189383*)
    Table[b[n], {n, 1, 120}]  (*A189384*)
    Table[c[n], {n, 1, 120}]  (*A189385*)

A213998 Numerators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 13, 25, 1, 1, 9, 47, 77, 137, 1, 1, 11, 37, 57, 87, 49, 1, 1, 13, 107, 319, 459, 223, 363, 1, 1, 15, 73, 533, 743, 341, 481, 761, 1, 1, 17, 191, 275, 1879, 2509, 3349, 4609, 7129, 1, 1, 19, 121, 1207, 1627, 2131, 2761, 3601, 4861, 7381, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = A005408(n-1) for n > 0;
T(n,2) = A188386(n-2) for n > 2;
T(n,n-3) = A124837(n-2) for n > 2;
T(n,n-2) = A027612(n-1) for n > 1;
T(n,n-1) = A001008(n) for n > 0;
T(n,n) = 1;
A214075(n,k) = floor(T(n,k) / A213999(n,k)).

Examples

			Start of triangle pf with corresponding triangles of numerators and denominators:
. 0:                            1
. 1:                         1    1/2
. 2:                     1     3/2    1/3
. 3:                  1    5/2    11/6    1/4
. 4:              1   7/2    13/3    25/12    1/5
. 5:           1    9/2   47/6    77/12   137/60   1/6
. 6:        1  11/2   37/3    57/4    87/10    49/20    1/7
. 7:     1  13/2  107/6  319/12  459/20   223/20  363/140   1/8
. 8:  1  15/2  73/3  533/12  743/15  341/10   481/35   761/280  1/9,
.
. 0:   numerators     1                          1    denominators
. 1:                1  1                        1  2       A213999
. 2:              1   3  1                     1 2  3
. 3:            1   5  11 1                   1 2 6  4
. 4:          1  7  13  25  1                1 2 3  12 5
. 5:        1  9  47  77 137  1             1 2 6 12  60 6
. 6:      1 11  37 57  87  49  1           1 2 3 4 10  20  7
. 7:    1 13 107 319 459 223 363 1        1 2 6 12 20 20 140 8
. 8:  1 15 73 533 743 341 481 761 1,     1 2 3 12 15 10 35 280 9.
		

Crossrefs

Cf. A005408, A188386 (columns).
Cf. A001008, A027612, A124837 (diagonals).
Cf. A213999 (denominators).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator, Ratio)
    a213998 n k = a213998_tabl !! n !! k
    a213998_row n = a213998_tabl !! n
    a213998_tabl = map (map numerator) $ iterate pf [1] where
       pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))])
                where x = denominator $ last row
  • Mathematica
    T[, 0] = 1; T[n, n_] := 1/(n + 1);
    T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
    Table[T[n, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)

A033931 a(n) = lcm(n,n+1,n+2).

Original entry on oeis.org

6, 12, 60, 60, 210, 168, 504, 360, 990, 660, 1716, 1092, 2730, 1680, 4080, 2448, 5814, 3420, 7980, 4620, 10626, 6072, 13800, 7800, 17550, 9828, 21924, 12180, 26970, 14880, 32736, 17952, 39270, 21420, 46620, 25308, 54834, 29640, 63960, 34440, 74046, 39732, 85140
Offset: 1

Views

Author

Keywords

Comments

Also denominator of h(n+2) - h(n-1), where h(n) is the n-th harmonic number Sum_{k=1..n} 1/k, the numerator is A188386. - Reinhard Zumkeller, Jul 04 2012

Crossrefs

Programs

  • Haskell
    a033931 n = lcm n (lcm (n + 1) (n + 2))  -- Reinhard Zumkeller, Jul 04 2012
    
  • Magma
    [Numerator((n^3-n)/(n^2+1)): n in [2..50]]; // Vincenzo Librandi, Aug 19 2014
    
  • Maple
    a:= n-> ilcm($n..n+2):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    LCM@@@Partition[Range[50],3,1] (* or *) LinearRecurrence[{0,4,0,-6,0,4,0,-1},{6,12,60,60,210,168,504,360},50] (* Harvey P. Dale, Jun 29 2019 *)
  • PARI
    a(n) = lcm(n^2+n,n+2) \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = n*(n+1)*(n+2)*[3-(-1)^n]/4.
From Reinhard Zumkeller, Jul 04 2012: (Start)
a(n) = 6 * A067046(n).
A007947(a(n)) = A078637(n). (End)
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2) (A244009).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 2. (End)

A119947 Triangle of numerators in the square of the matrix A[i,j] = 1/i for j <= i, 0 otherwise.

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 25, 13, 7, 1, 137, 77, 47, 9, 1, 49, 29, 19, 37, 11, 1, 363, 223, 153, 319, 107, 13, 1, 761, 481, 341, 743, 533, 73, 15, 1, 7129, 4609, 3349, 2509, 1879, 275, 191, 17, 1, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 121, 19, 1, 83711, 55991, 42131, 32891, 25961
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

The triangle of the corresponding denominators is A119948. The rationals appear in lowest terms (while in A027446 they are row-wise on the least common denominator).
The triangle with row number i multiplied with the least common multiple (LCM) of its denominators yields A027446.
First column is A001008. - Tilman Neumann, Oct 01 2008
Column 2 is A064169. - Clark Kimberling, Aug 13 2012
Third diagonal (11, 13, 47, ...) is A188386. - Clark Kimberling, Aug 13 2012

Examples

			The rationals are [1]; [3/4, 1/4]; [11/18, 5/18, 1/9]; [25/48, 13/48, 7/48, 1/16]; ... See the W. Lang link for more.
From _Clark Kimberling_, Aug 13 2012: (Start)
As a triangle given by f(n,m) = Sum_{h=m..n} 1/h, the first six rows are:
    1
    3    1
   11    5    1
   25   13    7    1
  137   77   47    9    1
   49   29   19   37   11    1
  363  223  153  319  107   13    1
(End)
		

Crossrefs

Cf. A002024: i appears i times (denominators in row i of the matrix A).
Row sums give A119949. Row sums of the triangle of rationals always give 1.
For the cube of this matrix see the rational triangle A119935/A119932 and A027447; see A027448 for the fourth power.

Programs

  • Mathematica
    f[n_, m_] := Numerator[Sum[1/k, {k, m, n}]]
    Flatten[Table[f[n, m], {n, 1, 10}, {m, 1, n}]]
    TableForm[Table[f[n, m], {n, 1, 10}, {m, 1, n}]] (* Clark Kimberling, Aug 13 2012 *)
  • PARI
    A119947_upto(n)={my(M=matrix(n,n,i,j,(j<=i)/i)^2);vector(n,r,apply(numerator,M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

a(i,j) = numerator(r(i,j)) with r(i,j):=(A^2)[i,j], where the matrix A has elements a[i,j] = 1/i if j<=i, 0 if j>i, (lower triangular).

Extensions

Edited by M. F. Hasler, Nov 05 2019

A192359 Numerator of h(n+6) - h(n), where h(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

49, 223, 341, 2509, 2131, 20417, 18107, 30233, 96163, 1959, 36177, 51939, 436511, 598433, 80507, 532541, 1388179, 1785181, 378013, 95003, 1181909, 4370849, 2671363, 3240049, 1560647, 9333997, 5547947, 2185691, 5138581, 1201967, 10493071, 12159157, 28060691, 32250013
Offset: 0

Views

Author

Gary Detlefs, Jun 28 2011

Keywords

Comments

Numerator of (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/((n+1)*(n+2)*...*(n+6)).
(2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,2,3,3]
p(n) is of period 9, repeating [2,2,2,1,1,1,1,1,1]
q1(n) is of period 5, repeating [0,0,0,0,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].

Crossrefs

Programs

  • GAP
    List(List([0..35],n->Sum([1..n+6],k->(1/k))-Sum([1..n],k->(1/k))),NumeratorRat); # Muniru A Asiru, Oct 21 2018
  • Magma
    [49] cat [Numerator(HarmonicNumber(n+6) - HarmonicNumber(n)): n in [1..40]]; // G. C. Greubel, Oct 20 2018
    
  • Maple
    h:= n-> sum(1/k,k=1..n):seq(numer(h(n+6)-h(n)), n=0..33);
    P:=(x,y,z,n)-> floor(((n+x)mod y)/z):
    a:=n->(2*n+7)*(3*n^4+42*n^3+203*n^2+392*n+252)/(2^(P(0,4,2,n)+2)*3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))):
    seq(a(n), n=0..25);
  • Mathematica
    Numerator[Table[HarmonicNumber[n+6]-HarmonicNumber[n],{n,0,40}]] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    h(n) = sum(k=1, n, 1/k);
    a(n) = numerator(h(n+6)-h(n)); \\ Michel Marcus, Apr 15 2017
    

Formula

a(n) = (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/(2^(P(0,4,2,n)+2) * 3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))), where P(x,y,z,n) = floor(((n+x)mod y)/z).

A192449 Numerator of h(n+7) - h(n), where h(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

363, 481, 3349, 2761, 25961, 22727, 263111, 237371, 21635, 8837, 695089, 529331, 9407549, 679829, 641069, 6671911, 36404897, 4075097, 2159257, 1412139, 36516143, 35036093, 88771727, 3715069
Offset: 0

Views

Author

Gary Detlefs, Jul 01 2011

Keywords

Comments

a(n) = numerator((7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/((n+1)*(n+2)*...*(n+7)));
(7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,4,3,4]
p(n) is of period 9, repeating [2,2,2,1,1,2,1,1,2]
q1(n) is of period 5, repeating [0,0,0,1,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Crossrefs

Programs

  • Maple
    h:= n-> sum(1/k,k=1..n):seq(numer(h(n+7)-h(n)), n=0..23);
    P:=(x,y,z,n)-> floor(((n+x) mod y)/z):
    m:=n-> P(1,4,3,n)+2*P(0,2,1,n)+2:
    p:=n-> P(0,3,2,n)+P(7,9,7,n)+1:
    q:=n-> P(0,5,3,n)+P(15,15,23,n):
    N7:=n->(7*n^6+168*n^5+1610*n^4+7840*n^3+20307*n^2+26264*n+13068): seq(N7(n)/(2^m(n)*3^p(n)*5^q(n)), n=0..23);
    # Alternative implementation, R. J. Mathar, Jul 12 2011:
    A192449 := proc(n) add(1/i,i=n+1..n+7) ; numer(%) ; end proc:
  • Mathematica
    #[[8]]-#[[1]]&/@Partition[HarmonicNumber[Range[0,30]],8,1]//Numerator (* Harvey P. Dale, Jul 22 2024 *)

Formula

a(n) = (7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/ (2^m(n)*3^p(n)*5^q(n)) where
m(n) = P(1,4,3,n) + 2*P(0,2,1,n) + 2,
p(n) = P(0,3,2,n) + P(7,9,7,n) + 1,
q(n) = P(0,5,3,n) + P(15,15,23,n),
P(x,y,z,n) = floor(((n+x) mod y)/z).

Extensions

Corrected and extended by Harvey P. Dale, Jul 22 2024
Showing 1-6 of 6 results.