cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067046 a(n) = lcm(n, n+1, n+2)/6.

Original entry on oeis.org

1, 2, 10, 10, 35, 28, 84, 60, 165, 110, 286, 182, 455, 280, 680, 408, 969, 570, 1330, 770, 1771, 1012, 2300, 1300, 2925, 1638, 3654, 2030, 4495, 2480, 5456, 2992, 6545, 3570, 7770, 4218, 9139, 4940, 10660, 5740, 12341, 6622, 14190, 7590, 16215, 8648, 18424, 9800
Offset: 1

Views

Author

Amarnath Murthy, Dec 30 2001

Keywords

Examples

			a(6) = 28 as lcm(6,7,8)/6 = 168/6 = 28.
		

Crossrefs

Cf. A000447 (bisection), A006331 (bisection), A033931.

Programs

Formula

G.f.: (x^4 + 2x^3 + 6x^2 + 2x + 1)/(1 - x^2)^4.
a(n) = binomial(n+2,3)*(3-(-1)^n)/4. - Gary Detlefs, Apr 13 2011
Quasipolynomial: a(n) = n(n+1)(n+2)/6 when n is odd and n(n+1)(n+2)/12 otherwise. - Charles R Greathouse IV, Feb 27 2012
a(n) = A033931(n) / 6. - Reinhard Zumkeller, Jul 04 2012
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*(1 - log(2)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(3*log(2) - 2). (End)

A188386 a(n) = numerator(H(n+2)-H(n-1)), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.

Original entry on oeis.org

11, 13, 47, 37, 107, 73, 191, 121, 299, 181, 431, 253, 587, 337, 767, 433, 971, 541, 1199, 661, 1451, 793, 1727, 937, 2027, 1093, 2351, 1261, 2699, 1441, 3071, 1633, 3467, 1837, 3887, 2053, 4331, 2281, 4799, 2521, 5291, 2773, 5807, 3037, 6347, 3313, 6911, 3601
Offset: 1

Views

Author

Gary Detlefs, Mar 29 2011

Keywords

Comments

Denominators are listed in A033931.
A027446 appears to be divisible by a(n).
The sequence lists also the largest odd divisors of 3*m^2-1 (A080663) for m>1. In fact, for m even, the largest odd divisor is 3*m^2-1 itself; for m odd, the largest odd divisor is (3*m^2-1)/2. From this follows the second formula given in Formula field. - Bruno Berselli, Aug 27 2013

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a188386 n = a188386_list !! (n-1)
    a188386_list = map numerator $ zipWith (-) (drop 3 hs) hs
       where hs = 0 : scanl1 (+) (map (1 %) [1..])
    -- Reinhard Zumkeller, Jul 03 2012
  • Magma
    [Numerator((3*n^2+6*n+2)/((n*(n+1)*(n+2)))): n in [1..50]]; // Vincenzo Librandi, Mar 30 2011
    
  • Maple
    seq((3-(-1)^n)*(3*n^2+6*n+2)/4, n=1..100);
  • Mathematica
    Table[(3 - (-1)^n)*(3*n^2 + 6*n + 2)/4, {n, 40}] (* Wesley Ivan Hurt, Jan 29 2017 *)
    Numerator[#[[4]]-#[[1]]]&/@Partition[HarmonicNumber[Range[0,50]],4,1] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{11,13,47,37,107,73},50] (* Harvey P. Dale, Dec 31 2017 *)

Formula

a(n) = numerator((3*n^2+6*n+2)/(n*(n+1)*(n+2))).
a(n) = (3-(-1)^n)*(3*n^2+6*n+2)/4.
a(2n+1) = A158463(n+1), a(2n) = A003154(n+1).
G.f.: -x*(11+13*x+14*x^2-2*x^3-x^4+x^5) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 09 2011
a(n) = numerator of coefficient of x^3 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - Francesco Daddi, Aug 04 2011
H(n+3) = 3/2 + 2*f(n)/((n+2)*(n+3)), where f(n) = Sum_{k=0..n}((-1)^k*binomial(-3,k)/(n+1-k)). - Gary Detlefs, Jul 17 2011
a(n) = A213998(n+2,2). - Reinhard Zumkeller, Jul 03 2012
Sum_{n>=1} 1/a(n) = c*(tan(c) - cot(c)/2) - 1/2, where c = Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022

A078637 a(n) = rad(n(n+1)(n+2)), where rad(m) is the largest squarefree number dividing m (see A007947).

Original entry on oeis.org

6, 6, 30, 30, 210, 42, 42, 30, 330, 330, 858, 546, 2730, 210, 510, 102, 1938, 570, 3990, 2310, 10626, 1518, 690, 390, 390, 546, 1218, 6090, 26970, 930, 2046, 1122, 39270, 3570, 7770, 4218, 54834, 7410, 15990, 8610, 74046, 19866, 14190, 7590, 32430, 6486
Offset: 1

Views

Author

Jon Perry, Dec 12 2002

Keywords

Examples

			a(3) = rad(3*4*5) = 30.
		

Crossrefs

Programs

  • Haskell
    a078637 n = a007947 $ product [n..n+2] -- Reinhard Zumkeller, Jul 04 2012
  • Maple
    with(numtheory):rad:=proc(n) local s,i: s:=ifactors(n)[2]: RETURN(mul(s[i][1],i=1..nops(s))): end; seq(rad(n*(n+1)*(n+2)),n=1..60); seq(piecewise(n mod 2=0,rad(n/2)*rad(n+1)*rad(n/2+1),rad(n)*rad(n+1)*rad(n+2)),n=1..60); (C. Ronaldo)
  • Mathematica
    lsf[n_]:=Max[Select[Divisors[n],SquareFreeQ]]; lsf/@Table[n(n+1)(n+2),{n,50}] (* Harvey P. Dale, Oct 18 2020 *)
    a[n_] := Times @@ Union @@ (FactorInteger[#][[;; , 1]] & /@ (n + {0, 1, 2})); Array[a, 50] (* Amiram Eldar, Jun 30 2022 *)
  • PARI
    rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])
    for (k=1,100,print1(rad(k*(k+1)*(k+2))","))
    

Formula

a(n) = rad(n)*rad(n+1)*rad(n+2) if n is odd; or rad(n/2)*rad(n+1)*rad(n/2+1) if n is even. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 13 2004
a(n) = A007947(A033931(n)). - Reinhard Zumkeller, Jul 04 2012
a(n) = A007947(A007531(n+2)). - Amiram Eldar, Jun 30 2022

A364004 Orders of simple groups PSL(2,K) with exactly 4 prime divisors.

Original entry on oeis.org

660, 1092, 4080, 3420, 6072, 7800, 9828, 14880, 32736, 25308, 51888, 58800, 74412, 194472, 265680, 456288, 612468, 1024128, 2097024, 2165292, 3594432, 7174332, 8487168, 28090752, 57750408, 96049728, 321367392
Offset: 1

Views

Author

Lixin Zheng, Jul 03 2023

Keywords

Comments

Sequence is conjectured to be infinite, see Bugeaud et al.
All entries are divisible by 6 by order formula for PSL(2,q).

Examples

			660 has prime divisors 2,3,5,11.
		

Crossrefs

Subsequence of A352806. Elements generated from A364003.

Formula

Terms are q*(q^2-1)/gcd(2, q-1) for q in A364003.
a(n) = A033931(A364003(n)-1).
Showing 1-4 of 4 results.