A119949
Row sums of (numerator) triangle A119947.
Original entry on oeis.org
1, 4, 17, 46, 271, 146, 1179, 2948, 19959, 23710, 278911, 296058, 4049539, 4547188, 3819427, 8113704, 142240297, 57945728, 1141687557, 811614110, 630796959, 989114644, 23941114969, 31470515448
Offset: 1
A027446
Triangle read by rows: square of the lower triangular mean matrix.
Original entry on oeis.org
1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1
Triangle starts
1
3, 1
11, 5, 2
25, 13, 7, 3
137, 77, 47, 27, 12
147, 87, 57, 37, 22, 10
1089, 669, 459, 319, 214, 130, 60
2283, 1443, 1023, 743, 533, 365, 225, 105
7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
... - _Joerg Arndt_, Mar 29 2013
The row sums give
A081528(n), n>=1.
-
rows = 10;
M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
-
A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019
A119948
Triangle of denominators in the square of the matrix with A[i,j] = 1/i for j <= i, 0 otherwise.
Original entry on oeis.org
1, 4, 4, 18, 18, 9, 48, 48, 48, 16, 300, 300, 300, 100, 25, 120, 120, 120, 360, 180, 36, 980, 980, 980, 2940, 1470, 294, 49, 2240, 2240, 2240, 6720, 6720, 1344, 448, 64, 22680, 22680, 22680, 22680, 22680, 4536
Offset: 1
The first rows of the table are:
[1];
[4, 4];
[18, 18, 9];
[48, 48, 48, 16];
[300, 300, 300, 100, 25];
[120, 120, 120, 360, 180, 36]; ...
Row sums give
A119950. Row sums of the triangle of rationals always give 1.
-
A119948_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n, r, apply(denominator, M[r, 1..r]))} \\ M. F. Hasler, Nov 05 2019
A247884
Number of positive integers < 10^n divisible by their first digit.
Original entry on oeis.org
9, 41, 327, 3158, 31450, 314349, 3143320, 31433005, 314329833, 3143298089, 31432980631, 314329806030, 3143298060001, 31432980599686, 314329805996514, 3143298059964770, 31432980599647312, 314329805996472711, 3143298059964726682, 31432980599647266367
Offset: 1
-
a(n)=c=0;for(k=1,10^n-1,d=digits(k);if(k%d[1]==0,c++));c
n=1;while(n<10,print1(a(n),", ");n++)
-
count = 9 # Start with the first 9 digits
print(1, 9)
n = 2
while n < 101:
for a in range(1, 10):
count += 10**(n-1)//a
if 10**(n-1) % a != 0:
count += 1
print(n, count)
n += 1
# David Consiglio, Jr., Sep 26 2014
Showing 1-4 of 4 results.
Comments