A369715 Number of digits of phi (the golden ratio) correctly approximated by Fibonacci(n+1) / Fibonacci(n).
Examples
For n=1, 1/1 = 1 matches the first digit of phi (1.618033), so a(1) = 1 For n=2, 2/1 = 2 which matches no digits of phi (1.618033), so a(2) = 0 For n=12, F(13)/F(12) = 1.6180 55... = 233/144 phi = 1.6180 33... ^ ^^^^ a(12) = 5 matching digits
Links
- David Consiglio, Jr., Table of n, a(n) for n = 1..1000
Programs
-
Python
from math import isqrt fib = [1,1] terms = [] while len(terms) < 1000: deg = 0 target = 0 test = 0 while target == test: target = (10**deg+isqrt(5*10**(2*deg)))//2 test = (10**deg*(fib[-1]))//fib[-2] deg += 1 terms.append(deg-1) fib.append(fib[-1]+fib[-2]) print(terms)
Comments