cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A345822 Numbers that are the sum of six fourth powers in exactly ten ways.

Original entry on oeis.org

122915, 151556, 161475, 162755, 173075, 183620, 185315, 199106, 199940, 201875, 202275, 204275, 204340, 204595, 206115, 207395, 209795, 211075, 213731, 217826, 217891, 218515, 221250, 223955, 224180, 225875, 226595, 227186, 228035, 236195, 237796, 237890
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345567 at term 8 because 197795 = 1^4 + 2^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 2^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 2^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 2^4 + 11^4 + 13^4 + 14^4 + 15^4 + 16^4 = 3^4 + 6^4 + 6^4 + 9^4 + 13^4 + 20^4 = 3^4 + 6^4 + 7^4 + 14^4 + 15^4 + 18^4 = 4^4 + 9^4 + 11^4 + 12^4 + 15^4 + 18^4 = 7^4 + 7^4 + 14^4 + 14^4 + 15^4 + 16^4.

Examples

			151556 is a term because 151556 = 1^4 + 2^4 + 2^4 + 9^4 + 11^4 + 19^4 = 1^4 + 2^4 + 3^4 + 7^4 + 16^4 + 17^4 = 1^4 + 8^4 + 11^4 + 12^4 + 13^4 + 17^4 = 2^4 + 3^4 + 7^4 + 8^4 + 11^4 + 19^4 = 3^4 + 3^4 + 3^4 + 4^4 + 12^4 + 19^4 = 3^4 + 4^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 4^4 + 13^4 + 13^4 + 13^4 + 16^4 = 4^4 + 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 4^4 + 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 4^4 + 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A346259 Numbers that are the sum of seven fifth powers in exactly ten ways.

Original entry on oeis.org

134581976, 189642309, 219063107, 235438301, 252277376, 275782407, 300919884, 308188849, 309631268, 315635200, 327287951, 335530174, 342030094, 358852218, 379913293, 384699424, 387538625, 391133568, 395423876, 405307926, 421322507, 423673757, 425588250
Offset: 1

Views

Author

David Consiglio, Jr., Jul 12 2021

Keywords

Comments

Differs from A345643 at term 7 because 281935070 = 17^5 + 17^5 + 18^5 + 21^5 + 23^5 + 26^5 + 48^5 = 7^5 + 17^5 + 20^5 + 23^5 + 24^5 + 32^5 + 47^5 = 7^5 + 13^5 + 13^5 + 26^5 + 30^5 + 36^5 + 45^5 = 1^5 + 13^5 + 21^5 + 21^5 + 33^5 + 37^5 + 44^5 = 6^5 + 7^5 + 13^5 + 31^5 + 34^5 + 36^5 + 43^5 = 4^5 + 8^5 + 16^5 + 29^5 + 31^5 + 41^5 + 41^5 = 6^5 + 8^5 + 12^5 + 28^5 + 37^5 + 38^5 + 41^5 = 3^5 + 6^5 + 15^5 + 32^5 + 35^5 + 38^5 + 41^5 = 7^5 + 24^5 + 25^5 + 32^5 + 34^5 + 37^5 + 41^5 = 13^5 + 20^5 + 21^5 + 34^5 + 35^5 + 36^5 + 41^5 = 8^5 + 24^5 + 26^5 + 31^5 + 31^5 + 40^5 + 40^5.

Examples

			134581976 is a term because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A346364 Numbers that are the sum of six fifth powers in exactly nine ways.

Original entry on oeis.org

9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 56229189632, 57088402525, 59954496800, 63432407850, 66188522400, 66507304800
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

This sequence differs from A345723:
55302546200 = 34^5 + 38^5 + 50^5 + 57^5 + 95^5 + 136^5
= 23^5 + 49^5 + 61^5 + 69^5 + 107^5 + 131^5
= 24^5 + 37^5 + 63^5 + 81^5 + 104^5 + 131^5
= 21^5 + 35^5 + 60^5 + 94^5 + 100^5 + 130^5
= 57^5 + 60^5 + 71^5 + 75^5 + 109^5 + 128^5
= 19^5 + 37^5 + 56^5 + 96^5 + 104^5 + 128^5
= 35^5 + 41^5 + 53^5 + 69^5 + 115^5 + 127^5
= 16^5 + 49^5 + 53^5 + 83^5 + 112^5 + 127^5
= 35^5 + 37^5 + 40^5 + 88^5 + 119^5 + 121^5
= 11^5 + 24^5 + 71^5 + 104^5 + 109^5 + 121^5,
so 55302546200 is in A345723, but is not in this sequence.

Examples

			9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
           = 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
           =  8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
           = 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
           = 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
           =  8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
           =  5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
           =  8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
           = 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
so 9085584992 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A344196 Numbers that are the sum of six fifth powers in ten or more ways.

Original entry on oeis.org

55302546200, 89999127392, 96110537743, 104484239200, 120492759200, 121258798144, 127794946400, 133364991375, 135030535200, 136156575744, 151305014432, 155434423925, 174388570400, 177099008000, 179272687000, 180336745600, 182844944832, 184948721056, 187873845500
Offset: 1

Views

Author

David Consiglio, Jr., Jun 25 2021

Keywords

Examples

			89999127392 =  4^5 + 36^5 + 39^5 +  40^5 +  90^5 + 153^5
            =  8^5 + 21^5 + 90^5 + 109^5 + 119^5 + 135^5
            =  8^5 + 28^5 + 98^5 + 102^5 + 104^5 + 142^5
            = 10^5 + 38^5 + 74^5 + 102^5 + 118^5 + 140^5
            = 13^5 + 51^5 + 64^5 +  98^5 + 112^5 + 144^5
            = 18^5 + 44^5 + 66^5 +  98^5 + 112^5 + 144^5
            = 18^5 + 52^5 + 72^5 +  78^5 + 118^5 + 144^5
            = 28^5 + 60^5 + 63^5 +  65^5 + 124^5 + 142^5
            = 36^5 + 53^5 + 62^5 +  63^5 + 129^5 + 139^5
            = 39^5 + 41^5 + 64^5 +  91^5 +  98^5 + 149^5
so 89999127392 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-4 of 4 results.