cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345821 Numbers that are the sum of six fourth powers in exactly nine ways.

Original entry on oeis.org

88595, 132546, 134931, 144835, 146450, 162355, 170275, 171555, 171795, 172036, 172835, 177380, 177716, 180770, 183540, 184835, 185555, 187700, 187715, 190100, 190211, 193635, 195380, 195780, 196435, 197780, 199075, 199475, 199730, 199955, 202196, 202980
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345566 at term 2 because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.

Examples

			122915 is a term because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A346286 Numbers that are the sum of seven fifth powers in exactly nine ways.

Original entry on oeis.org

110276376, 124732805, 127808693, 130298618, 188116743, 202274051, 202686274, 203343582, 230909843, 233137574, 233549568, 234250752, 244250335, 251138524, 253480833, 254017026, 254380543, 265006057, 265072501, 273628068, 279536432, 279770326, 280361082
Offset: 1

Views

Author

David Consiglio, Jr., Jul 12 2021

Keywords

Comments

Differs from A345631 at term 5 because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.

Examples

			110276376 is a term because 110276376 = 1^5 + 3^5 + 5^5 + 7^5 + 17^5 + 23^5 + 40^5 = 5^5 + 10^5 + 16^5 + 16^5 + 19^5 + 20^5 + 40^5 = 1^5 + 8^5 + 14^5 + 16^5 + 21^5 + 27^5 + 39^5 = 7^5 + 8^5 + 11^5 + 14^5 + 16^5 + 33^5 + 37^5 = 4^5 + 7^5 + 8^5 + 13^5 + 26^5 + 31^5 + 37^5 = 1^5 + 5^5 + 6^5 + 20^5 + 28^5 + 29^5 + 37^5 = 3^5 + 3^5 + 7^5 + 18^5 + 27^5 + 32^5 + 36^5 = 6^5 + 12^5 + 18^5 + 25^5 + 30^5 + 31^5 + 34^5 = 6^5 + 10^5 + 20^5 + 27^5 + 27^5 + 33^5 + 33^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345723 Numbers that are the sum of six fifth powers in nine or more ways.

Original entry on oeis.org

9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 55302546200, 56229189632, 57088402525, 59954496800, 63432407850
Offset: 1

Views

Author

David Consiglio, Jr., Jun 24 2021

Keywords

Examples

			16933805856 =  2^5 + 38^5 + 68^5 + 74^5 + 92^5 +  92^5
            =  2^5 + 54^5 + 58^5 + 64^5 + 92^5 +  96^5
            = 14^5 + 36^5 + 61^5 + 67^5 + 94^5 +  94^5
            = 15^5 + 49^5 + 52^5 + 60^5 + 94^5 +  96^5
            = 17^5 + 49^5 + 53^5 + 57^5 + 92^5 +  98^5
            = 29^5 + 36^5 + 42^5 + 72^5 + 88^5 +  99^5
            = 31^5 + 36^5 + 54^5 + 54^5 + 94^5 +  97^5
            = 34^5 + 34^5 + 46^5 + 72^5 + 76^5 + 104^5
            = 35^5 + 36^5 + 69^5 + 72^5 + 89^5 +  95^5
so 16933805856 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A346363 Numbers that are the sum of six fifth powers in exactly eight ways.

Original entry on oeis.org

2295937600, 4335900525, 6251954544, 8986552608, 13413708308, 14539246326, 15277569450, 15728636000, 16770321920, 16873011232, 17572402769, 17713454592, 17960776999, 18190647200, 19621666592, 20570070125, 20827689300, 22322555200, 23461554774, 23613244800
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

This sequence differs from A345722:
9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
= 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
= 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
= 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
= 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
= 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
= 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
= 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
= 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
so 9085584992 is in A345722, but is not in this sequence.

Examples

			2295937600 =  4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5
           =  8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5
           =  8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5
           = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5
           =  3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5
           =  4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5
           = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5
           =  1^5 +  7^5 + 34^5 + 57^5 + 58^5 + 63^5,
so 2295937600 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A346365 Numbers that are the sum of six fifth powers in exactly ten ways.

Original entry on oeis.org

55302546200, 89999127392, 96110537743, 104484239200, 120492759200, 121258798144, 127794946400, 133364991375, 135030535200, 136156575744, 151305014432, 155434423925, 174388570400, 177099008000, 179272687000, 182844944832, 184948721056, 187873845500
Offset: 1

Views

Author

David Consiglio, Jr., Jul 18 2021

Keywords

Comments

This sequence differs from A344196:
180336745600 = 48^5 + 54^5 + 66^5 + 66^5 + 112^5 + 174^5
= 9^5 + 21^5 + 93^5 + 112^5 + 117^5 + 168^5
= 11^5 + 44^5 + 73^5 + 92^5 + 133^5 + 167^5
= 15^5 + 81^5 + 94^5 + 95^5 + 129^5 + 166^5
= 1^5 + 49^5 + 62^5 + 107^5 + 138^5 + 163^5
= 35^5 + 69^5 + 75^5 + 98^5 + 141^5 + 162^5
= 18^5 + 81^5 + 105^5 + 112^5 + 135^5 + 159^5
= 14^5 + 50^5 + 62^5 + 86^5 + 150^5 + 158^5
= 2^5 + 52^5 + 54^5 + 108^5 + 146^5 + 158^5
= 14^5 + 22^5 + 66^5 + 118^5 + 142^5 + 158^5
= 4^5 + 50^5 + 58^5 + 102^5 + 150^5 + 156^5,
so 180336745600 is in A344196, but is not in this sequence.

Examples

			55302546200 = 34^5 + 38^5 + 50^5 + 57^5 + 95^5 + 136^5
            = 23^5 + 49^5 + 61^5 + 69^5 + 107^5 + 131^5
            = 24^5 + 37^5 + 63^5 + 81^5 + 104^5 + 131^5
            = 21^5 + 35^5 + 60^5 + 94^5 + 100^5 + 130^5
            = 57^5 + 60^5 + 71^5 + 75^5 + 109^5 + 128^5
            = 19^5 + 37^5 + 56^5 + 96^5 + 104^5 + 128^5
            = 35^5 + 41^5 + 53^5 + 69^5 + 115^5 + 127^5
            = 16^5 + 49^5 + 53^5 + 83^5 + 112^5 + 127^5
            = 35^5 + 37^5 + 40^5 + 88^5 + 119^5 + 121^5
            = 11^5 + 24^5 + 71^5 + 104^5 + 109^5 + 121^5
so 55302546200 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.