cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345566 Numbers that are the sum of six fourth powers in nine or more ways.

Original entry on oeis.org

88595, 122915, 132546, 134931, 144835, 146450, 151556, 161475, 162355, 162755, 170275, 171555, 171795, 172036, 172835, 173075, 177380, 177716, 180770, 183540, 183620, 184835, 185315, 185555, 187700, 187715, 190100, 190211, 193635, 195380, 195780, 196435
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			122915 is a term because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345631 Numbers that are the sum of seven fifth powers in nine or more ways.

Original entry on oeis.org

110276376, 124732805, 127808693, 130298618, 134581976, 188116743, 189642309, 202274051, 202686274, 203343582, 219063107, 230909843, 233137574, 233549568, 234250752, 235438301, 244250335, 251138524, 252277376, 253480833, 254017026, 254380543
Offset: 1

Views

Author

David Consiglio, Jr., Jun 22 2021

Keywords

Examples

			124732805 is a term because 124732805 = 3^5 + 18^5 + 22^5 + 22^5 + 24^5 + 27^5 + 39^5 = 4^5 + 15^5 + 17^5 + 21^5 + 29^5 + 34^5 + 35^5 = 5^5 + 14^5 + 17^5 + 24^5 + 25^5 + 35^5 + 35^5 = 7^5 + 8^5 + 17^5 + 26^5 + 29^5 + 34^5 + 34^5 = 7^5 + 10^5 + 12^5 + 31^5 + 31^5 + 32^5 + 32^5 = 7^5 + 12^5 + 23^5 + 24^5 + 24^5 + 26^5 + 39^5 = 7^5 + 14^5 + 22^5 + 22^5 + 23^5 + 28^5 + 39^5 = 16^5 + 25^5 + 25^5 + 28^5 + 28^5 + 28^5 + 35^5 = 20^5 + 24^5 + 24^5 + 25^5 + 25^5 + 32^5 + 35^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345722 Numbers that are the sum of six fifth powers in eight or more ways.

Original entry on oeis.org

2295937600, 4335900525, 6251954544, 8986552608, 9085584992, 13413708308, 14539246326, 15277569450, 15728636000, 16770321920, 16873011232, 16933805856, 17572402769, 17713454592, 17960776999, 18190647200, 19621666592, 20570070125, 20827689300
Offset: 1

Views

Author

David Consiglio, Jr., Jun 24 2021

Keywords

Examples

			4335900525 is a term because 4335900525 = 2^5 + 24^5 + 34^5 + 56^5 + 61^5 + 78^5 = 3^5 + 21^5 + 37^5 + 54^5 + 62^5 + 78^5 = 3^5 + 21^5 + 39^5 + 49^5 + 66^5 + 77^5 = 3^5 + 26^5 + 32^5 + 49^5 + 72^5 + 73^5 = 8^5 + 16^5 + 42^5 + 49^5 + 61^5 + 79^5 = 9^5 + 13^5 + 43^5 + 47^5 + 66^5 + 77^5 = 19^5 + 20^5 + 30^5 + 45^5 + 61^5 + 80^5 = 21^5 + 24^5 + 28^5 + 37^5 + 67^5 + 78^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A346364 Numbers that are the sum of six fifth powers in exactly nine ways.

Original entry on oeis.org

9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 56229189632, 57088402525, 59954496800, 63432407850, 66188522400, 66507304800
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

This sequence differs from A345723:
55302546200 = 34^5 + 38^5 + 50^5 + 57^5 + 95^5 + 136^5
= 23^5 + 49^5 + 61^5 + 69^5 + 107^5 + 131^5
= 24^5 + 37^5 + 63^5 + 81^5 + 104^5 + 131^5
= 21^5 + 35^5 + 60^5 + 94^5 + 100^5 + 130^5
= 57^5 + 60^5 + 71^5 + 75^5 + 109^5 + 128^5
= 19^5 + 37^5 + 56^5 + 96^5 + 104^5 + 128^5
= 35^5 + 41^5 + 53^5 + 69^5 + 115^5 + 127^5
= 16^5 + 49^5 + 53^5 + 83^5 + 112^5 + 127^5
= 35^5 + 37^5 + 40^5 + 88^5 + 119^5 + 121^5
= 11^5 + 24^5 + 71^5 + 104^5 + 109^5 + 121^5,
so 55302546200 is in A345723, but is not in this sequence.

Examples

			9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
           = 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
           =  8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
           = 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
           = 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
           =  8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
           =  5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
           =  8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
           = 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
so 9085584992 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A344196 Numbers that are the sum of six fifth powers in ten or more ways.

Original entry on oeis.org

55302546200, 89999127392, 96110537743, 104484239200, 120492759200, 121258798144, 127794946400, 133364991375, 135030535200, 136156575744, 151305014432, 155434423925, 174388570400, 177099008000, 179272687000, 180336745600, 182844944832, 184948721056, 187873845500
Offset: 1

Views

Author

David Consiglio, Jr., Jun 25 2021

Keywords

Examples

			89999127392 =  4^5 + 36^5 + 39^5 +  40^5 +  90^5 + 153^5
            =  8^5 + 21^5 + 90^5 + 109^5 + 119^5 + 135^5
            =  8^5 + 28^5 + 98^5 + 102^5 + 104^5 + 142^5
            = 10^5 + 38^5 + 74^5 + 102^5 + 118^5 + 140^5
            = 13^5 + 51^5 + 64^5 +  98^5 + 112^5 + 144^5
            = 18^5 + 44^5 + 66^5 +  98^5 + 112^5 + 144^5
            = 18^5 + 52^5 + 72^5 +  78^5 + 118^5 + 144^5
            = 28^5 + 60^5 + 63^5 +  65^5 + 124^5 + 142^5
            = 36^5 + 53^5 + 62^5 +  63^5 + 129^5 + 139^5
            = 39^5 + 41^5 + 64^5 +  91^5 +  98^5 + 149^5
so 89999127392 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.