cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345565 Numbers that are the sum of six fourth powers in eight or more ways.

Original entry on oeis.org

58035, 59780, 87746, 88595, 96195, 96450, 102371, 106451, 106515, 108035, 108275, 108290, 108771, 112370, 112931, 115251, 122835, 122850, 122915, 124691, 125971, 132546, 133395, 133571, 133586, 134675, 134931, 136931, 138275, 138595, 143650, 144755, 144835
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			59780 is a term because 59780 = 1^4 + 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 1^4 + 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 1^4 + 7^4 + 7^4 + 9^4 + 10^4 + 14^4 = 2^4 + 5^4 + 6^4 + 11^4 + 11^4 + 13^4 = 3^4 + 7^4 + 8^4 + 10^4 + 11^4 + 13^4 = 5^4 + 6^4 + 7^4 + 7^4 + 11^4 + 14^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345630 Numbers that are the sum of seven fifth powers in eight or more ways.

Original entry on oeis.org

36620574, 80552143, 81401376, 82078424, 92347417, 93653176, 94486699, 94626949, 98873875, 105674625, 110276376, 121050874, 124732805, 125959393, 127808693, 129228307, 130298618, 134581976, 144209018, 145340799, 147245218, 147898763, 151727082
Offset: 1

Views

Author

David Consiglio, Jr., Jun 22 2021

Keywords

Examples

			80552143 is a term because 80552143 = 1^5 + 4^5 + 21^5 + 21^5 + 23^5 + 29^5 + 34^5 = 1^5 + 8^5 + 14^5 + 23^5 + 23^5 + 32^5 + 32^5 = 1^5 + 8^5 + 16^5 + 19^5 + 27^5 + 28^5 + 34^5 = 3^5 + 12^5 + 13^5 + 14^5 + 28^5 + 31^5 + 32^5 = 3^5 + 14^5 + 17^5 + 18^5 + 18^5 + 27^5 + 36^5 = 4^5 + 11^5 + 13^5 + 22^5 + 23^5 + 24^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 23^5 + 24^5 + 36^5 = 6^5 + 23^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345721 Numbers that are the sum of six fifth powers in seven or more ways.

Original entry on oeis.org

1184966816, 1700336000, 1717860100, 1972000800, 2229475325, 2295937600, 2396275200, 2548597632, 2625460992, 2886251808, 3217068800, 3697267200, 3729261536, 3765398725, 4046532448, 4165116967, 4246566632, 4286704224, 4335900525, 4489548050
Offset: 1

Views

Author

David Consiglio, Jr., Jun 24 2021

Keywords

Examples

			1700336000 is a term because 1700336000 = 4^5 + 17^5 + 31^5 + 37^5 + 43^5 + 68^5 = 6^5 + 9^5 + 10^5 + 23^5 + 60^5 + 62^5 = 6^5 + 14^5 + 16^5 + 50^5 + 50^5 + 64^5 = 7^5 + 25^5 + 30^5 + 54^5 + 56^5 + 58^5 = 8^5 + 21^5 + 23^5 + 27^5 + 57^5 + 64^5 = 9^5 + 21^5 + 22^5 + 29^5 + 53^5 + 66^5 = 13^5 + 32^5 + 35^5 + 38^5 + 45^5 + 67^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345723 Numbers that are the sum of six fifth powers in nine or more ways.

Original entry on oeis.org

9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 55302546200, 56229189632, 57088402525, 59954496800, 63432407850
Offset: 1

Views

Author

David Consiglio, Jr., Jun 24 2021

Keywords

Examples

			16933805856 =  2^5 + 38^5 + 68^5 + 74^5 + 92^5 +  92^5
            =  2^5 + 54^5 + 58^5 + 64^5 + 92^5 +  96^5
            = 14^5 + 36^5 + 61^5 + 67^5 + 94^5 +  94^5
            = 15^5 + 49^5 + 52^5 + 60^5 + 94^5 +  96^5
            = 17^5 + 49^5 + 53^5 + 57^5 + 92^5 +  98^5
            = 29^5 + 36^5 + 42^5 + 72^5 + 88^5 +  99^5
            = 31^5 + 36^5 + 54^5 + 54^5 + 94^5 +  97^5
            = 34^5 + 34^5 + 46^5 + 72^5 + 76^5 + 104^5
            = 35^5 + 36^5 + 69^5 + 72^5 + 89^5 +  95^5
so 16933805856 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A346363 Numbers that are the sum of six fifth powers in exactly eight ways.

Original entry on oeis.org

2295937600, 4335900525, 6251954544, 8986552608, 13413708308, 14539246326, 15277569450, 15728636000, 16770321920, 16873011232, 17572402769, 17713454592, 17960776999, 18190647200, 19621666592, 20570070125, 20827689300, 22322555200, 23461554774, 23613244800
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

This sequence differs from A345722:
9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
= 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
= 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
= 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
= 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
= 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
= 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
= 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
= 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
so 9085584992 is in A345722, but is not in this sequence.

Examples

			2295937600 =  4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5
           =  8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5
           =  8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5
           = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5
           =  3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5
           =  4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5
           = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5
           =  1^5 +  7^5 + 34^5 + 57^5 + 58^5 + 63^5,
so 2295937600 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.