A345574
Numbers that are the sum of seven fourth powers in eight or more ways.
Original entry on oeis.org
19491, 21252, 21267, 21332, 21507, 21636, 21876, 23652, 25347, 30372, 31251, 31412, 31652, 32116, 32356, 33811, 33907, 35427, 35637, 35652, 35892, 36052, 36261, 37812, 37827, 38052, 38067, 38596, 38676, 39267, 39347, 39891, 39971, 39972, 40212, 40356, 40452
Offset: 1
21252 is a term because 21252 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 1^4 + 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4 = 3^4 + 4^4 + 6^4 + 7^4 + 8^4 + 9^4 + 9^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A345616
Numbers that are the sum of eight fifth powers in eight or more ways.
Original entry on oeis.org
8625619, 8742208, 9773236, 10036233, 10071050, 12247994, 13180706, 13377868, 13662501, 14584992, 14591744, 14611077, 15251119, 15539667, 16112362, 16374250, 16391025, 16472544, 16588000, 16667851, 17059075, 17216298, 17405300, 17917097, 18107564, 18392902
Offset: 1
8742208 is a term because 8742208 = 1^5 + 1^5 + 2^5 + 3^5 + 5^5 + 7^5 + 15^5 + 24^5 = 1^5 + 1^5 + 9^5 + 9^5 + 11^5 + 17^5 + 18^5 + 22^5 = 1^5 + 3^5 + 7^5 + 12^5 + 12^5 + 13^5 + 17^5 + 23^5 = 2^5 + 5^5 + 6^5 + 7^5 + 15^5 + 15^5 + 15^5 + 23^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 12^5 + 21^5 + 21^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 12^5 + 21^5 + 21^5 = 4^5 + 4^5 + 8^5 + 8^5 + 9^5 + 15^5 + 17^5 + 23^5 = 8^5 + 13^5 + 14^5 + 14^5 + 14^5 + 16^5 + 19^5 + 20^5 = 10^5 + 12^5 + 12^5 + 13^5 + 16^5 + 16^5 + 19^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A345629
Numbers that are the sum of seven fifth powers in seven or more ways.
Original entry on oeis.org
28608832, 35663099, 36090526, 36620574, 46998599, 51095638, 52541851, 54233651, 54827543, 54886349, 61263643, 61634374, 63514593, 64810976, 65198607, 66708676, 67887843, 70979107, 72970305, 74002457, 74115801, 74132607, 74487093, 75044651, 75378359
Offset: 1
35663099 is a term because 35663099 = 1^5 + 9^5 + 16^5 + 17^5 + 24^5 + 24^5 + 28^5 = 2^5 + 3^5 + 17^5 + 23^5 + 24^5 + 24^5 + 26^5 = 2^5 + 10^5 + 15^5 + 17^5 + 23^5 + 23^5 + 29^5 = 4^5 + 8^5 + 13^5 + 19^5 + 21^5 + 27^5 + 27^5 = 4^5 + 11^5 + 13^5 + 19^5 + 20^5 + 22^5 + 30^5 = 5^5 + 6^5 + 19^5 + 19^5 + 20^5 + 20^5 + 30^5 = 7^5 + 9^5 + 12^5 + 18^5 + 18^5 + 27^5 + 28^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345631
Numbers that are the sum of seven fifth powers in nine or more ways.
Original entry on oeis.org
110276376, 124732805, 127808693, 130298618, 134581976, 188116743, 189642309, 202274051, 202686274, 203343582, 219063107, 230909843, 233137574, 233549568, 234250752, 235438301, 244250335, 251138524, 252277376, 253480833, 254017026, 254380543
Offset: 1
124732805 is a term because 124732805 = 3^5 + 18^5 + 22^5 + 22^5 + 24^5 + 27^5 + 39^5 = 4^5 + 15^5 + 17^5 + 21^5 + 29^5 + 34^5 + 35^5 = 5^5 + 14^5 + 17^5 + 24^5 + 25^5 + 35^5 + 35^5 = 7^5 + 8^5 + 17^5 + 26^5 + 29^5 + 34^5 + 34^5 = 7^5 + 10^5 + 12^5 + 31^5 + 31^5 + 32^5 + 32^5 = 7^5 + 12^5 + 23^5 + 24^5 + 24^5 + 26^5 + 39^5 = 7^5 + 14^5 + 22^5 + 22^5 + 23^5 + 28^5 + 39^5 = 16^5 + 25^5 + 25^5 + 28^5 + 28^5 + 28^5 + 35^5 = 20^5 + 24^5 + 24^5 + 25^5 + 25^5 + 32^5 + 35^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
A346285
Numbers that are the sum of seven fifth powers in exactly eight ways.
Original entry on oeis.org
36620574, 80552143, 81401376, 82078424, 92347417, 93653176, 94486699, 94626949, 98873875, 105674625, 121050874, 125959393, 129228307, 144209018, 145340799, 147245218, 147898763, 151727082, 151923168, 152361276, 152664876, 153877208, 155107349, 155270357
Offset: 1
36620574 is a term because 36620574 = 4^5 + 9^5 + 14^5 + 17^5 + 18^5 + 21^5 + 31^5 = 1^5 + 12^5 + 13^5 + 14^5 + 20^5 + 24^5 + 30^5 = 8^5 + 9^5 + 12^5 + 13^5 + 16^5 + 27^5 + 29^5 = 5^5 + 7^5 + 7^5 + 20^5 + 23^5 + 23^5 + 29^5 = 17^5 + 18^5 + 20^5 + 20^5 + 20^5 + 20^5 + 29^5 = 2^5 + 7^5 + 14^5 + 14^5 + 23^5 + 26^5 + 28^5 = 4^5 + 8^5 + 8^5 + 17^5 + 23^5 + 27^5 + 27^5 = 2^5 + 3^5 + 14^5 + 18^5 + 24^5 + 26^5 + 27^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A345722
Numbers that are the sum of six fifth powers in eight or more ways.
Original entry on oeis.org
2295937600, 4335900525, 6251954544, 8986552608, 9085584992, 13413708308, 14539246326, 15277569450, 15728636000, 16770321920, 16873011232, 16933805856, 17572402769, 17713454592, 17960776999, 18190647200, 19621666592, 20570070125, 20827689300
Offset: 1
4335900525 is a term because 4335900525 = 2^5 + 24^5 + 34^5 + 56^5 + 61^5 + 78^5 = 3^5 + 21^5 + 37^5 + 54^5 + 62^5 + 78^5 = 3^5 + 21^5 + 39^5 + 49^5 + 66^5 + 77^5 = 3^5 + 26^5 + 32^5 + 49^5 + 72^5 + 73^5 = 8^5 + 16^5 + 42^5 + 49^5 + 61^5 + 79^5 = 9^5 + 13^5 + 43^5 + 47^5 + 66^5 + 77^5 = 19^5 + 20^5 + 30^5 + 45^5 + 61^5 + 80^5 = 21^5 + 24^5 + 28^5 + 37^5 + 67^5 + 78^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments