A345583
Numbers that are the sum of eight fourth powers in eight or more ways.
Original entry on oeis.org
13268, 14212, 14788, 15427, 15667, 16612, 16627, 16692, 16707, 16772, 16822, 16852, 16882, 16947, 17348, 17363, 17428, 17493, 17877, 17972, 17987, 18052, 18117, 18227, 18948, 19157, 19237, 19252, 19267, 19412, 19492, 19507, 19572, 19682, 19747, 19748, 19828
Offset: 1
14212 is a term because 14212 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 8^4 + 10^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 8^4 + 8^4 + 8^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 10^4 = 3^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A345615
Numbers that are the sum of eight fifth powers in seven or more ways.
Original entry on oeis.org
4104553, 4915506, 6011150, 6027989, 6323394, 6563733, 6622231, 6776363, 6785394, 7982834, 8181481, 8288806, 8625619, 8658144, 8710484, 8742208, 8773477, 8932244, 8996669, 9252219, 9253706, 9311478, 9773236, 9904983, 9976120, 10036233, 10045233, 10053008
Offset: 1
4915506 is a term because 4915506 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 15^5 + 21^5 = 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345625
Numbers that are the sum of nine fifth powers in eight or more ways.
Original entry on oeis.org
1431398, 1431640, 1531397, 1952415, 1969221, 2247917, 2530399, 2596936, 2652563, 2652860, 2736790, 2851254, 2965588, 3088909, 3148674, 3273590, 3297416, 3329120, 3329362, 3332244, 3336895, 3345442, 3345653, 3353186, 3361614, 3362217, 3364738, 3378178, 3553641
Offset: 1
1431640 is a term because 1431640 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A345630
Numbers that are the sum of seven fifth powers in eight or more ways.
Original entry on oeis.org
36620574, 80552143, 81401376, 82078424, 92347417, 93653176, 94486699, 94626949, 98873875, 105674625, 110276376, 121050874, 124732805, 125959393, 127808693, 129228307, 130298618, 134581976, 144209018, 145340799, 147245218, 147898763, 151727082
Offset: 1
80552143 is a term because 80552143 = 1^5 + 4^5 + 21^5 + 21^5 + 23^5 + 29^5 + 34^5 = 1^5 + 8^5 + 14^5 + 23^5 + 23^5 + 32^5 + 32^5 = 1^5 + 8^5 + 16^5 + 19^5 + 27^5 + 28^5 + 34^5 = 3^5 + 12^5 + 13^5 + 14^5 + 28^5 + 31^5 + 32^5 = 3^5 + 14^5 + 17^5 + 18^5 + 18^5 + 27^5 + 36^5 = 4^5 + 11^5 + 13^5 + 22^5 + 23^5 + 24^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 23^5 + 24^5 + 36^5 = 6^5 + 23^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A346333
Numbers that are the sum of eight fifth powers in exactly eight ways.
Original entry on oeis.org
8625619, 9773236, 10036233, 10071050, 12247994, 13180706, 13377868, 13662501, 14584992, 14591744, 14611077, 15251119, 16112362, 16374250, 16391025, 16472544, 16588000, 16667851, 17059075, 17216298, 17405300, 17917097, 18107564, 18392902, 18470839, 18541635
Offset: 1
8625619 is a term because 8625619 = 2^5 + 5^5 + 5^5 + 9^5 + 10^5 + 12^5 + 12^5 + 24^5 = 1^5 + 3^5 + 8^5 + 9^5 + 11^5 + 11^5 + 12^5 + 24^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 16^5 + 23^5 = 1^5 + 3^5 + 3^5 + 4^5 + 11^5 + 17^5 + 18^5 + 22^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 16^5 + 22^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 16^5 + 19^5 + 20^5 = 3^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 18^5 + 20^5 = 3^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 18^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A345617
Numbers that are the sum of eight fifth powers in nine or more ways.
Original entry on oeis.org
8742208, 15539667, 18913169, 19987308, 20135313, 21505583, 21512966, 21563089, 21727552, 22237510, 22256608, 22438990, 22545600, 22686818, 22932525, 23106589, 23122550, 23189782, 23221517, 23287858, 23346048, 23477344, 23798742, 23847285, 23931325, 24138358
Offset: 1
15539667 is a term because 15539667 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments