A345582
Numbers that are the sum of eight fourth powers in seven or more ways.
Original entry on oeis.org
8003, 8243, 9043, 9218, 9283, 9523, 10372, 10803, 10868, 10948, 11043, 11412, 11557, 11587, 12083, 12692, 12932, 13188, 13268, 13333, 13508, 13972, 14147, 14212, 14387, 14788, 14883, 14933, 14948, 14963, 15013, 15028, 15093, 15173, 15268, 15317, 15332, 15397
Offset: 1
8243 is a term because 8243 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345614
Numbers that are the sum of eight fifth powers in six or more ways.
Original entry on oeis.org
1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4104553, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4915506, 4970823, 5003645, 5112274, 5259111, 5449985
Offset: 1
2593811 is a term because 2593811 = 1^5 + 1^5 + 4^5 + 9^5 + 13^5 + 13^5 + 13^5 + 17^5 = 1^5 + 1^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 17^5 = 1^5 + 6^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 + 18^5 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 15^5 + 15^5 + 16^5 = 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 12^5 + 13^5 + 18^5 = 4^5 + 4^5 + 4^5 + 6^5 + 11^5 + 11^5 + 13^5 + 18^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A345616
Numbers that are the sum of eight fifth powers in eight or more ways.
Original entry on oeis.org
8625619, 8742208, 9773236, 10036233, 10071050, 12247994, 13180706, 13377868, 13662501, 14584992, 14591744, 14611077, 15251119, 15539667, 16112362, 16374250, 16391025, 16472544, 16588000, 16667851, 17059075, 17216298, 17405300, 17917097, 18107564, 18392902
Offset: 1
8742208 is a term because 8742208 = 1^5 + 1^5 + 2^5 + 3^5 + 5^5 + 7^5 + 15^5 + 24^5 = 1^5 + 1^5 + 9^5 + 9^5 + 11^5 + 17^5 + 18^5 + 22^5 = 1^5 + 3^5 + 7^5 + 12^5 + 12^5 + 13^5 + 17^5 + 23^5 = 2^5 + 5^5 + 6^5 + 7^5 + 15^5 + 15^5 + 15^5 + 23^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 12^5 + 21^5 + 21^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 12^5 + 21^5 + 21^5 = 4^5 + 4^5 + 8^5 + 8^5 + 9^5 + 15^5 + 17^5 + 23^5 = 8^5 + 13^5 + 14^5 + 14^5 + 14^5 + 16^5 + 19^5 + 20^5 = 10^5 + 12^5 + 12^5 + 13^5 + 16^5 + 16^5 + 19^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A345624
Numbers that are the sum of nine fifth powers in seven or more ways.
Original entry on oeis.org
1431398, 1431429, 1431640, 1439173, 1447570, 1504636, 1531397, 1597929, 1671167, 1696159, 1697686, 1697928, 1778835, 1936454, 1952415, 1969221, 1975049, 2017344, 2092122, 2182161, 2198967, 2208680, 2247917, 2280818, 2283911, 2289343, 2314335, 2329845, 2340319
Offset: 1
1431429 is a term because 1431429 = 1^5 + 2^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 14^5 + 15^5 = 2^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345629
Numbers that are the sum of seven fifth powers in seven or more ways.
Original entry on oeis.org
28608832, 35663099, 36090526, 36620574, 46998599, 51095638, 52541851, 54233651, 54827543, 54886349, 61263643, 61634374, 63514593, 64810976, 65198607, 66708676, 67887843, 70979107, 72970305, 74002457, 74115801, 74132607, 74487093, 75044651, 75378359
Offset: 1
35663099 is a term because 35663099 = 1^5 + 9^5 + 16^5 + 17^5 + 24^5 + 24^5 + 28^5 = 2^5 + 3^5 + 17^5 + 23^5 + 24^5 + 24^5 + 26^5 = 2^5 + 10^5 + 15^5 + 17^5 + 23^5 + 23^5 + 29^5 = 4^5 + 8^5 + 13^5 + 19^5 + 21^5 + 27^5 + 27^5 = 4^5 + 11^5 + 13^5 + 19^5 + 20^5 + 22^5 + 30^5 = 5^5 + 6^5 + 19^5 + 19^5 + 20^5 + 20^5 + 30^5 = 7^5 + 9^5 + 12^5 + 18^5 + 18^5 + 27^5 + 28^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A346332
Numbers that are the sum of eight fifth powers in exactly seven ways.
Original entry on oeis.org
4104553, 4915506, 6011150, 6027989, 6323394, 6563733, 6622231, 6776363, 6785394, 7982834, 8181481, 8288806, 8658144, 8710484, 8773477, 8932244, 8996669, 9252219, 9253706, 9311478, 9904983, 9976120, 10045233, 10053008, 10193511, 10359767, 10514944, 10541225
Offset: 1
4104553 is a term because 4104553 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 5^5 + 7^5 + 21^5 = 3^5 + 3^5 + 4^5 + 6^5 + 8^5 + 14^5 + 16^5 + 19^5 = 3^5 + 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 18^5 + 18^5 = 3^5 + 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 18^5 + 18^5 = 1^5 + 1^5 + 4^5 + 7^5 + 10^5 + 16^5 + 16^5 + 18^5 = 7^5 + 11^5 + 11^5 + 13^5 + 14^5 + 15^5 + 16^5 + 16^5 = 6^5 + 12^5 + 12^5 + 13^5 + 13^5 + 15^5 + 16^5 + 16^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments