A345573
Numbers that are the sum of seven fourth powers in seven or more ways.
Original entry on oeis.org
16691, 17347, 17971, 19491, 20706, 21252, 21267, 21332, 21507, 21636, 21876, 21956, 22547, 22612, 23156, 23587, 23652, 23827, 23892, 24436, 25107, 25347, 25427, 25716, 25971, 26051, 27812, 29092, 29187, 29332, 29427, 29442, 29636, 29701, 29716, 29956, 29971
Offset: 1
17347 is a term because 17347 = 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 + 9^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345609
Numbers that are the sum of seven fifth powers in six or more ways.
Original entry on oeis.org
13562501, 14583968, 21555313, 22057487, 22066065, 23089782, 23345024, 24217918, 24401574, 24855016, 24952718, 24993517, 25052501, 25385064, 28608832, 29558618, 30653536, 31613713, 32559143, 33005785, 33533765, 33635825, 33828631, 34267551, 34268332, 35431351
Offset: 1
14583968 is a term because 14583968 = 1^5 + 4^5 + 14^5 + 16^5 + 19^5 + 21^5 + 23^5 = 2^5 + 4^5 + 14^5 + 14^5 + 20^5 + 22^5 + 22^5 = 4^5 + 5^5 + 10^5 + 15^5 + 20^5 + 21^5 + 23^5 = 6^5 + 8^5 + 9^5 + 15^5 + 15^5 + 20^5 + 25^5 = 6^5 + 8^5 + 14^5 + 14^5 + 14^5 + 16^5 + 26^5 = 6^5 + 10^5 + 12^5 + 12^5 + 16^5 + 16^5 + 26^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A345615
Numbers that are the sum of eight fifth powers in seven or more ways.
Original entry on oeis.org
4104553, 4915506, 6011150, 6027989, 6323394, 6563733, 6622231, 6776363, 6785394, 7982834, 8181481, 8288806, 8625619, 8658144, 8710484, 8742208, 8773477, 8932244, 8996669, 9252219, 9253706, 9311478, 9773236, 9904983, 9976120, 10036233, 10045233, 10053008
Offset: 1
4915506 is a term because 4915506 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 15^5 + 21^5 = 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345630
Numbers that are the sum of seven fifth powers in eight or more ways.
Original entry on oeis.org
36620574, 80552143, 81401376, 82078424, 92347417, 93653176, 94486699, 94626949, 98873875, 105674625, 110276376, 121050874, 124732805, 125959393, 127808693, 129228307, 130298618, 134581976, 144209018, 145340799, 147245218, 147898763, 151727082
Offset: 1
80552143 is a term because 80552143 = 1^5 + 4^5 + 21^5 + 21^5 + 23^5 + 29^5 + 34^5 = 1^5 + 8^5 + 14^5 + 23^5 + 23^5 + 32^5 + 32^5 = 1^5 + 8^5 + 16^5 + 19^5 + 27^5 + 28^5 + 34^5 = 3^5 + 12^5 + 13^5 + 14^5 + 28^5 + 31^5 + 32^5 = 3^5 + 14^5 + 17^5 + 18^5 + 18^5 + 27^5 + 36^5 = 4^5 + 11^5 + 13^5 + 22^5 + 23^5 + 24^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 23^5 + 24^5 + 36^5 = 6^5 + 23^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A346284
Numbers that are the sum of seven fifth powers in exactly seven ways.
Original entry on oeis.org
28608832, 35663099, 36090526, 46998599, 51095638, 52541851, 54233651, 54827543, 54886349, 61263643, 61634374, 63514593, 64810976, 65198607, 66708676, 67887843, 70979107, 72970305, 74002457, 74115801, 74132607, 74487093, 75044651, 75378359, 75612250, 75997624
Offset: 1
28608832 is a term because 28608832 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 24^5 + 29^5 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 24^5 + 28^5 = 6^5 + 6^5 + 14^5 + 14^5 + 22^5 + 22^5 + 28^5 = 7^5 + 8^5 + 13^5 + 14^5 + 17^5 + 26^5 + 27^5 = 2^5 + 8^5 + 11^5 + 19^5 + 22^5 + 23^5 + 27^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 24^5 + 25^5 + 25^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A345721
Numbers that are the sum of six fifth powers in seven or more ways.
Original entry on oeis.org
1184966816, 1700336000, 1717860100, 1972000800, 2229475325, 2295937600, 2396275200, 2548597632, 2625460992, 2886251808, 3217068800, 3697267200, 3729261536, 3765398725, 4046532448, 4165116967, 4246566632, 4286704224, 4335900525, 4489548050
Offset: 1
1700336000 is a term because 1700336000 = 4^5 + 17^5 + 31^5 + 37^5 + 43^5 + 68^5 = 6^5 + 9^5 + 10^5 + 23^5 + 60^5 + 62^5 = 6^5 + 14^5 + 16^5 + 50^5 + 50^5 + 64^5 = 7^5 + 25^5 + 30^5 + 54^5 + 56^5 + 58^5 = 8^5 + 21^5 + 23^5 + 27^5 + 57^5 + 64^5 = 9^5 + 21^5 + 22^5 + 29^5 + 53^5 + 66^5 = 13^5 + 32^5 + 35^5 + 38^5 + 45^5 + 67^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments